

OPTIMIZING PORTABLE SDR SOFTWARE

John Hogg (Zeligsoft, Gatineau, QC, Canada; hogg@zeligsoft.com);
Francis Bordeleau (Zeligsoft, Gatineau, QC, Canada; francis@zeligsoft.com).

ABSTRACT

Software-defined radios have two requirements that are
usually assumed to be diametrically opposed: high
performance and portability. Standards such as the SCA
focus on the second requirement for control logic, but SDR
data paths in these systems tend to be optimized at the
expense of flexibility. This is the result of two fundamental
constraints on optimizing component-based SDR software in
the traditional development lifecycle. The first is the
ordering of the steps in the lifecycle itself: deployment
information isn’t provided until after it’s needed. The
second is the conflating of the component model contract
with the code contract. This paper examines past practices.
It then explains how to overcome these constraints to deliver
components that are both portable and optimized for the
context in which they’re used.

1. THE PROBLEM

Component-based development is widely accepted as a
powerful way to deliver high-quality software-defined radio
(SDR) waveforms quickly. Components have clear
interfaces, simplifying interactions between development
teams and reducing the task of verification teams. This
leads to increased quality. Component encapsulation also
effectively reduces the size of a waveform, since the number
of interactions (and hence the complexity of a system)
increases exponentially with the number of interacting
elements. This decreased problem size leads directly to
decreased resource requirements and decreased waveform
time-to-market.

Another key perceived benefit of component-based
development is increased portability of waveforms. Since
interfaces are tightly specified, a waveform developed for
one physical platform can be ported to another platform with
minimal need to rewrite platform-specific code.
(Components may also be reused in different waveforms, but
a deeper discussion is beyond the scope of this paper.)

For these reasons mainstream SDR development today is
component-based. Military software-defined radios use the
Software Communications Architecture (SCA) standard and

the SCA is increasingly used in non-military radio and
waveform development as well.

All is not positive, however. In addition to the perceived
benefits of component-based SDR development, there is a
perceived problem as well: decreased performance.
Component-based development is widely viewed as
delivering slower and larger waveforms than hand-
optimized, non-component development. The key question
is, “How can we maintain the benefits of components
without paying a performance cost?”

The remainder of this paper is organized as follows. Section
2 briefly outlines the concepts of components and
component-based development, including an explanation of
how components are deployed to platforms. Section 3
reviews traditional development lifecycles. This includes
optimized development not using components and
conventional component-based development. Section 4
identifies the fundamental drawback with conventional
component-based development: the ordering of steps in the
lifecycle precludes fully optimizing code. A reordered
lifecycle is described that avoids this shortcoming and
Deployment-Aware Generation™ (DAG™) is described.
Finally, Section 5 looks at other potential optimizations
through DAG.

2. COMPONENTS

2.1 Component Elements

A component is a composable unit of software with a
precisely-specified interface. A component definition is the
specification of an interface and a (usually less formal)
specification of the behavior behind that interface. A
component implementation is a realization of the definition.
Depending on context, this realization may be an executable
file, the source code from which the executable was
generated or one or more models from which the source
code was generated. A component instance is the runtime
manifestation of an implementation. In the SCA, the term is
also applied to component roles, or the use of a component
within a waveform definition.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:francis@zeligsoft.com
mailto:hogg@zeligsoft.com

The composition of a set of interacting component instances
is a waveform in SDR (or more generally, an application).
This is the architecture of the waveform, or “who speaks to
whom”. A waveform specifies the connection between the
interfaces of its component roles and the component
definitions and implementations that play those roles.

In general systems a waveform is simply another type of
component and components may be hierarchically composed
to arbitrary levels. In standards such as the SCA there is a
strict component/waveform dichotomy, where waveforms
have internal structure but no behavior and components have
behavior but no internal structure. This paper covers the
general case but space precludes a full discussion of it here.

Component and waveform definitions, implementations,
roles and instances may all have aspects or properties that
are configured or set to specific values in the contexts in
which they are used. For instance, the cardinality of a
replicated interface may be configured when a component
role is defined in a waveform.

2.2 Component Behaviors and Interfaces

A component implementation has two distinct aspects. The
first is the functional behavior of the component. This is the
component’s reason for existence: it is the logic that the
component is intended to deliver, and would exist in a non-
component-based implementation.

The second aspect is the component behavior, or the logic
that controls how a component interacts with the external
world. It is the code that makes a component a component
and includes communication behavior, startup and shutdown
of the component and its connections, and fault
management.

Functional and component behaviors frequently come from
different sources. Either or both may be manually written as
code or generated from a tool. Regardless of source, the two
must be merged. Furthermore, no interesting component is
written in a single pass, so the evolving functional and
component behaviors must be synchronized through each
iteration of the development lifecycle.

Components have two types of interface. The obvious one
is a component’s outer API, or set of interfaces to the
external system. The component communicates with other
components as part of a waveform through external APIs,
and also with the system outside of the waveform.
Developing against the outer API requires a knowledge of
the communication system used by the API.

The second type of component interface is the internal API,
or the interface between the functional behavior and the
component packaging. Developing against this interface
requires knowledge of the messages, but not the external
communication system through which the component
behavior will interact with other components.

Both the internal and external APIs provide opportunities
for integrating generated code. Therefore, both APIs
provide opportunities for optimizing code, as we will see.

2.4 Platforms

A waveform and its components do not execute in a vacuum.
Each component runs on some node and nodes are
connected to each other to form a platform. Nodes and
platforms are a component-based representation of an
execution environment; they are the architectural analogs to
components and waveforms respectively. More general
systems treat a platform as another type of node and allow
nesting to arbitrary levels.

A platform may exist at several levels. At the bottom is
physical hardware. Above that, a logical platform can be
composed of software execution environments such as
RTOSes and BIOSes. Different levels of granularity are
possible: an RTOS can contain processes which contain
threads which contain logical or lightweight threads.

2.4 Deployment

An application and a platform come together through
deployment. A component deployment is the assignment of
a source component instance in a waveform to a target node
instance in a platform. A waveform deployment is a set of
component deployments.

Source, target, and indeed platform are relative terms. An
application implementing the parts of a logical platform may
be deployed to a physical platform. A waveform application
may then be deployed to the logical platform. In one case
the logical platform is the source; in the other it is the target.

3. TRADITIONAL DEVELOPMENT LIFECYCLES

With these definitions in hand, we can look at two
traditional approaches to waveform definition. The first is
the development lifecycle of optimized waveforms not based
on components. The second is the conventional component-
based development lifecycle for waveforms.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 1: the traditional hand-optimized non-component lifecycle

3.1 Hand-Optimized Lifecycle Without Components

SDR waveform development is now primarily component-
based, but radios based on or using significant amounts of
software existed well before the adoption of the SCA. An
idealized lifecycle for development of these radios is as
follows:

• Define the broad architecture of the hardware and
software and the deployment of software to
hardware.

• Implement the software (i.e., write code).
• Build the executables.
• Load, execute and test the software.
• Iterate until the required functionality and quality

has been achieved.
See Figure 1 for a graphical view of the lifecycle.

A key point is that the deployment decision is made before
the functionality is implemented. The implementation can
therefore be optimized with respect to the chosen
deployment.

However, there is a corresponding drawback: the early
optimization severely limits component portability. Since
each executable is hand-crafted to be optimized for a given
context (chip and logical environment) within a platform,
the cost of redeploying it to another context can be very
high. It may also require the rewriting of other software that
is not redeployed, but which communicates with the
redeployed software.

Hand-optimized, non-component-based waveforms are
therefore potentially optimized but non-portable.

3.2 Conventional Component-Based Lifecycle

Most SDR waveform development today is based on the
SCA. It is therefore based on components and component
models. An idealized lifecycle for the lifecycle development
is as follows:

• Model the platform and waveform architectures.
• Verify the model consistency and correctness.

• Implement the components in code; where possible,
generate component behavior from the models.

• Build the component executables.
• Deploy the waveform component executables to the

platform nodes.
• Load, execute and test the software.
• Iterate until the required functionality and quality

has been achieved.
See Figure 2 for a graphical view of the lifecycle.

Here, the key point is that deployment is performed after
generation, implementation and building. A component
executable can be deployed without change to any
compatible node. The deployment information is not used
in the generation and implementation tasks.

There are very good reasons why a component-based
approach has become the norm in SDR development.
Among other benefits, the resulting components are highly
portable across different platforms.

However, there is a cost. Opportunities for component
optimization are limited because generated components rely
on the existence of a specific hardware abstraction layer or
middleware. Communication code is invoked through a
generic, portable interface.

This does not mean that no optimization is possible. On the
contrary, optimization strategies are based on middleware,
and middleware vendors have finely tuned their products
over the years. A modern ORB greatly reduces the number
of instructions executed when communicating components
are collocated. However, there are limits to this type of
optimization. A hand-coded direct call will always beat an
optimized message.

Load/Execute/TestBuildImplementDeploy

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

4. REORGANIZING THE LIFECYCLE

In moving forward to component-based development we
have seemingly lost the opportunity to deliver hand-
optimized performance. But is this really an unavoidable
tradeoff? In this section we will see that it is not—that we
can have our cake and eat it too.

4.1 Identifying the Problem
The basic problem in the component-based lifecycle
described above is that generation is performed before
deployment information is available. As a result, the
waveform components must interact through some
consistent, homogeneous communication system
(middleware or hardware abstraction layer).

Taking a slightly different view, we can observe that a
component-based approach is generally identified with a
model-based approach—the components are modeled before
they are implemented. However, the model perspective is
not complete. Most critically, the “contract” of the
generated code is identical to the contract of the model.
The model and code interfaces are treated as different
representations of the same thing. There is an unstated
assumption that a model will be mapped to a single code
pattern for any given target platform. Despite the initial
modeling, this approach is implicitly code-centric—or
equivalently, binary-centric. The model is simply a
graphical representation of the code.

With these insights we can take another look at the SDR
development lifecycle and reorder it to maintain both
portability and optimized performance.

4.2 The Optimized Lifecycle

The optimized development lifecycle for developing
component-based SDR waveforms is close to the
conventional one, but there is a vital reordering. The steps
are:

• Model the platform and waveform architectures.

• Verify the model consistency and correctness.
• Deploy the waveform component executables to the

platform nodes using a precise model.
• Implement the components in code; where possible,

generate component behavior from the models.
• Build the component executables.
• Load, execute and test the software.
• Iterate until the required functionality and quality

has been achieved.
See Figure 3 for a graphical view of the lifecycle.

This is exactly the conventional lifecycle, except that the
deployment is done before generation and building. The key
benefit is that no universal HAL or middleware is needed.
In fact, several middleware or HAL facilities can coexist in
the same system, and the optimal one (or a minimal internal
communication mechanism) can be used for each
communication path.

The reordering described here supports deployment-aware
generation or DAG, the use of deployment information to
generate code. DAG enables simultaneous component
portability and optimization.

4.3 Deployment-Aware Generation

Full use of DAG requires a full and precise specification of
the deployment target platform and a precise specification of
the deployment itself.

Target platform information has been part of software
development based on Model-Driven Architecture® or
MDA® for at least a decade and a half. However, this
platform-aware generation is based on knowledge of the
generated component’s target location only. The important
information in platform-aware generation is the target
environment: the RTOS or BIOS, middleware and the like.
The generated code is context-independent. The same code
will be generated regardless of other components’ locations.

Figure 2: the conventional component-based lifecycle

Load/Execute/Test

Model
Platform

Build DeployVerify

QoS
Type

Generate

Implement

Model
Waveform

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 3: the optimized component-based lifecycle

By contrast, DAG is context-sensitive. The generated code
depends not only on the location of the generated
component, but also on the locations of generated
cooperating components. If two components are collocated
they may interact through direct function calls (for
synchronous communication) or shared memory (for
asynchronous communication). If they are not collocated
the communication mechanism may be through middleware.

DAG of a communication path can even be affected by the
location of a third component. If a service is only used in
one collocated place, it may be provided through a local
API. If it must be available globally, a remote interface may
be provided to all clients.

Up to this point we have only discussed the deployment of
waveform components to platform nodes. However, DAG
code can also depend on the deployment of individual
communication paths between components. For example,
control and data paths between a single pair of components
may have completely different quality-of-service (QoS)
requirements. DAG generation can map each path to the
best communication mechanism. This powerful capability
has been largely ignored in past because conventional
development lifecycles have not been able to make use of
communication path deployment specifications.

DAG applies most naturally to component-based behavior as
described in the introduction, not functional behavior.
Component-based behavior is normally tightly stereotyped
and well-adapted to code generation. Optimization (whether
automated or by hand) requires knowledge of the
deployment context. By contrast, functional behavior varies
considerably in structure between components. While high-
quality generation is possible, it is most often hand-
generated. Since the entire rationale of component-based
development is to encapsulate component internals from
their environment, it is independent of component context
knowledge.

This distinction between the treatment of component-based
and functional code is enabled by distinguishing between the
contracts of the modeled component and the generated code.
The contract of the (possibly hand-written) functional
behavior is expressed in terms of the internal API. The
generated component behavior presents the external API
that is the contract of the modeled component.

The functional behavior developer works against the
minimal, efficient internal API. The generated component
code uses the optimal communication mechanism for each
communication path. This is the same approach that is used
to hand-optimize non-component-based waveforms.

4.4 Iteration

Any interesting piece of software is developed over multiple
iterations, and this is especially true of SDR waveforms.
DAG fully supports iterative development—in fact, it
enables iterative development.

When any change at the global level carries a heavy cost at
the detailed level, development managers will naturally be
reluctant to explore too far. DAG-based automated
optimization of communication details frees the developer to
experiment and explore at an architectural level. Since
locally optimized code can be generated at the click of a
mouse, the investment in a specific deployment is low.

This leads to global optimization. The goal is not to avoid
making mistakes; the goal is to make mistakes (i.e.,
experiment) quickly and cheaply. DAG automation drives
down the cost and time required for optimized deployment
evaluation.

Load/Execute/TestModel
Waveform
and Platform

BuildDeployVerify

QoS
Type

Generate

Implement

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5. CONCLUSION

5.1 Other Applications of DAG

This paper concentrated on the application of Deployment-
Aware Generation to optimizing communication between
components. While communication is an obvious aspect of
waveforms that can be optimized with respect to deployment
information, it is far from the only one.

For instance, timing, log and other services can be
implemented and accessed in different ways depending on
component locations. Encryption may be optimized out
depending on the exposure of communications.

At a more complex level, fault management behavior can be
deeply affected by deployment decisions. If two
components are guaranteed to fail together, they do not need
to manage failures in each other. Of course, this generalizes
to control of startup, shutdown and reconfiguration.

5.2 Summary

Hand-coding maximizes optimization, but limits portability.
Conventional component-based SBC development
maximizes portability, but limits optimization. Deployment-
Aware Generation maximizes portability and optimization.
The cornerstones of this approach are the right ordering of
deployment and generation in the development lifecycle, and
precise models of the waveform, the platform and the
deployment of the former to the latter. When these come
together, software-defined radio developers can deliver
waveforms that are both optimized and portable.

REFERENCES

[1]JTRS Standards, Joint Program Executive Office (JPEO) Joint
Tactical Radio System (JTRS), Software Communication
Architecture Specification Version 2.2.2, 15 May, 2006.
http://sca.jpeojtrs.mil/downloads.asp?ID=2.2.2.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

http://sca.jpeojtrs.mil/downloads.asp?ID=2.2.2

	Home
	Search by Session
	Search by Author

