

DEBUGGING STRATEGIES FOR SCA COMPONENTS AND WAVEFORMS

Drew Cormier (Wireless@Virginia Tech: Blacksburg, VA, USA; acormier@vt.edu)

Carl Dietrich (Wireless@Virginia Tech: Blacksburg, VA, USA; cdietric@vt.edu)

ABSTRACT

In order to diagnose errors in a communications system, an
SDR developer must have a debugging environment that is
able to send and receive known signals to various ports in a
waveform, as well as assess the output response exhibited
by components of interest. The developer must also be able
to understand the effects of latency in his/her system

These methods of diagnosis are illustrated using ALF, a
free, open source graphical debugging environment that
takes advantage of the SCA’s use of CORBA to connect to
component ports within a running waveform.

ALF is written in python for ease of development and
maintenance. It includes several tools that can be used to
monitor waveform performance and compare it with
expectation. Users can develop and add their own tools to
ALF as needed. Current tools include a software arbitrary
waveform generator, a real-time spectrum and constellation
plotter, and a signal sink. Provisions also exist for
monitoring timing and determining latency throughout a
waveform, enabling identification of components requiring
buffering or optimization for real-time operation.

1. INTRODUCTION

The rapidly evolving nature of communications technology
demands a debugging environment that is able to change
based on the needs of the SDR designer; therefore the best
debugging environments are those that are flexible. Certain
fundamental tools are commonly used in debugging many
communication systems, such as sources, sinks, and basic
plotters. The use of sources, sinks, and plotters allow the
developer to quickly identify the location of errors in the
system. Even though each individual component in the
system creates the correct input/output response, it is also
important to know if the component is responding in a
timely fashion relative to the other components in the
system; therefore tools for analyzing timing are also needed.

These basic capabilities are realized through the use of
ALF, an open source debugging and running environment
that runs on the Open Source SCA Implementation ::
Embedded (OSSIE), which is also open source. ALF was
originally donated to Virginia Tech by SAIC in January
2007; since then members of the OSSIE development team
have contributed various upgrades. The open source natures

of the tool as well as the framework allow the developer to
utilize the tool in whatever way is necessary for his/her
system. Since the tool is developed in Python, it can be
easily modified, in a timely manner, to meet new debugging
requirements that arise with emerging technologies.

2. DEBUGGING METHODS

There are many criteria for determining if a software
defined radio is functioning properly. First of all, the
algorithm within each component must have the proper
input/output response. Once the correct independent
functionalities of the components in a waveform are
verified, the overall algorithm of the waveform must be
tested. In order to diagnose problems with the waveform, it
is often advantageous to be able to diagnose sub-groups of
connected components within the waveform. There are two
schools of thought for the diagnosis of subgroups of
components: one can either develop smaller waveforms and
test them individually, or one can develop a set of tool sets
that allows the developer to debug subsets of the waveform
while the entire waveform is running. The use of standards,
such as CORBA (the middleware used in the SCA), make
this runtime debugging possible.

Having spec-compliant algorithms is not the only
criteria for having a working radio. In the case of an SCA
software defined radio, the SCA compliance of the radio
must also be diagnosed. For example, a developer may
wish to test the correct functionality of the Ports in a
Resource.

The developer must often test his/her software under
extreme and unusual conditions. Certain operating
conditions occur so infrequently that it becomes necessary
for the debugger to have the ability to feed artificial data to
the system in order to verify the response of the system in
“what if” scenarios. In many cases, this involves sending
invalid data to the system in order to test the system’s
robustness or in order to confirm that the proper error
messages are generated. In order to asses the functionality
of a portion of the system, the time spent debugging can be
dramatically reduced if the programmer has the ability to
send data to multiple points in the system as well as the
ability to monitor data at multiple points in the system. The
debugger’s ability to asses a system as a collection of
smaller systems reduces time to market; without this ability

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

the developer must waste time developing separate smaller
systems that must be later reconstructed.

2.1 Timing

Correct timing is essential for any communication system.
The throughput of larger and more complex communication
systems is often limited by the slowest component in the
system. In many situations, excessive latency in one signal
processing area can lead to eventual, if not immediate,
system failure. Because of the importance of timing, it is
essential that the debugger has the ability to asses the timing
performance of his/her system. By being able to
immediately identify latency in the system the developer is
able to know where in his/her code it is necessary to
implement more efficient algorithms or buffers. Assessing
timing is an inherently difficult problem to solve since any
assessment of timing will have at least some impact on the
timing of the system itself. In order to accurately analyze
the timing of a system the runtime performance of the
system should be impacted as little as possible.

2.2 Plotting

Plotting data is a convenient method for determining the
approximate response of an algorithm. By plotting the
output of a component or a waveform the developer is able
to quickly identify severe problems in his system. On the
component level, for example, the developer can see if
his/her low-pass filter is indeed attenuating high
frequencies. On a waveform level, a developer can plot the
output of each component in a system in order to determine
where in the waveform the signal may be becoming corrupt.

2.3 Signal Sources and Sinks

One of the most intuitive means for debugging is the use of
signal sources and sinks. Signal sources are used to send
known data to a system, and signal sinks allow the
developer to compare the resulting output against expected
data. There are multiple approaches to implementing
sources and sinks. One approach is to include the sources
and/or sinks in a waveform; this approach is advantageous
when the sources and/or sinks are permanent (e.g., a
waveform that always writes data to file). In the event that
the signal sources and/or sink are temporary (i.e., they are
only present for debugging), they must be added and
removed from the waveform during the debugging process.
Alternatively, it is possible to use a development
environment that can add and remove signal sources and
sinks during runtime. Using this approach, the developer
does not have to reconstruct his/her waveform every time a
different signal source/sink configuration is desired.

2.4 Use of Multiple Debugging Environments

The use of multiple debugging software packages can allow
a developer to take advantage of the strengths of each
package. For example, MATLAB contains many
toolboxes for signal processing. Ideally, any software-
debugging tool should have the ability to interact with
existing software packages. This allows the debugger to
take advantage of the most appropriate tools at appropriate
times, and helps prevent the debugging package from
becoming obsolete. Allowing software packages to interact
with each other all keeps the tool developer from having to
“reinvent the wheel.”

One of the most common methods of facilitating
interaction between software packages is reading and
writing to file. By giving a debugging tool the ability to
write data to a file, it becomes compatible with any other
software package that is able to read that data file.

3. EXAMPLE DEBUGGING ENVIRONMENT: ALF

OSSIE is an SCA-based framework for developing,
debugging, and running software defined radios. The
software is open source, and free to the public [1]. ALF is
an open-source graphical debugging environment for SCA-
based waveforms running on the OSSIE framework.
Because ALF is open-source and it utilizes an open-source
framework (OSSIE), there is unlimited potential for tool
add-ons as well as other modifications. This expandability
allows the developer to utilize the tool for unique and
proprietary systems. Simply put, if ALF or the ALF tools
do not fit the needs of the developer, they can be changed by
the developer.

Once a developer has created his/her component
waveform code, he/she can use the OSSIE framework along
with ALF to run and debug the waveform. Debugging can
be performed using various tools (generally written in
Python) to monitor data, send data to the system, as well as
monitor latency in the waveform. The ALF tools are written
in, but are not limited to, Python. In ALF’s current version,
available tools include Plot, Arbitrary Waveform Generator
(AWG), and Write to File.

Through the use of CORBA, ALF is able to connect to
any available uses or provides port. ALF connects to the
framework in order to get a list of all installed applications,
through which it can obtain a list of all components and
ports in each application. When a user wishes to establish a
connection between an ALF tool and a port, a pointer to the
resource is obtained, which allows ALF to get a reference to
the port using the getPort() method through CORBA. Once
the reference to the port is obtained, ALF is able to narrow
to the Port. In the case of a provides port, the handle to the
port allows ALF to call port methods such as pushPacket().
In the case of a uses port, the connectPort() method is

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

called. Once this method is called, all data sent to the uses
port will in turn be sent to the appropriate ALF tool.

Prior to the development of ALF, in order to debug a
single component, a waveform containing the component
must be generated in order to run the component in the
OSSIE framework. ALF utilizes the OSSIE Waveform
Developer to automatically create a temporary waveform
environment for any existing component, allowing the ALF
tools to be utilized on stand-alone components (not just
waveforms).

Since ALF is able to communicate with ports using the
OSSIE file system, ALF can also be used in debugging
applications running on multiple hardware platforms (e.g.,
an embedded platform).

Figure 1 displays the ALF main window. The upper
left portion of the display contains a list of available
waveforms on the file system. To install and start a
waveform, the user simply double-clicks on the waveform.
Once installed, the running waveform is added to the list of
installed waveforms in the bottom left portion of the
display. A block diagram display of the waveform of
interest inhabits the right portion of the display.

Figure 1: The ALF Main Display

3.1 ALF Timing

The ALF timing tool allows the developer to view the
approximate throughput (in samples per second) of provides
ports in a waveform. Using this feature allows the
developer to quickly realize which components in a system
have unsatisfactory throughput relative to other components
in a waveform. In order to use the timing capabilities of
ALF on a given provides port, there must exist a
corresponding timing uses port in the component.

When timing is enabled in ALF, the timing ports in
each component of a selected waveform are activated and a
timestamp is made for every packet being sent to a provides
port in a waveform. After a provides port is finished
processing an incoming packet, a message is sent to the
component’s timing port. The timing port then creates a
second timestamp that is retrieved by ALF. ALF then
calculates the approximate throughput in samples per
second by simply dividing the difference between the two

timestamps by the known number of samples per packet.
The programmer is then able to see the throughput of the
port in real time in the ALF graphical user interface (GUI).

In the event that a developer wishes to approximate the
throughput of a component without adding a timing port, it
is also possible to approximate the throughput of a uses port
by connecting the uses port to a component with a provides
port with timing support that belongs to a different
component. This connection can either be established in the
software assembly descriptor file of the waveform prior to
runtime or during runtime using ALF’s connect tool (not
detailed in this paper). In order to obtain a more accurate
approximation of the throughput of the uses port using this
method, the timing component should have as little
overhead as possible.

It is possible to run SCA waveforms on multiple
hardware platforms within a single domain; therefore, it is
possible to monitor the throughput of provides ports running
on embedded platforms using ALF. This ability is
extremely useful since the throughput of a component
running on, for example, and digital signal processor varies
significantly from the throughput of the same component
running on a general purpose processor.

3.2 Plot Tool

The plot tool allows a developer to plot any data coming
from a component uses port in real time. The tool currently
supports plotting frequency domain (utilizing an FFT) as
well as plotting constellation diagrams.

Prior to the development of this tool, a developer could
visualize his/her data by either adding plot components to
the system prior to runtime or by writing data to file using
whatever means and then plotting the recorded data using a
second software package (e.g., Microsoft Excel). Using the
plotting tool is advantageous over using plotting
components since the system does not have to be modified
prior to runtime. Adding multiple plot components is
unwieldy, and often leads to runtime issues as the overhead
of graphical displays is often excessive. As mentioned in
Section 2.1, introducing latency can arrest the entire system.
By having a plotting tool available, the waveform does not
need to be reconstructed, and graphical processing only
occurs when needed.

The plot tool is based on a commonly used open source
package, but it has been modified to be compatible with the
OSSIE framework. During initialization the Plot tool
initializes its own ORB. Once initialized, the ORB allows
the Plot tool to connect to the naming service used by
OSSIE. Since ALF has already retrieved the naming service
names associated with the port (application name,
component name, and port name), the tool can narrow to the
port and connect to the port. Once the port connection is

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

established, all data sent to the uses port by the component
will in turn be sent to the Plot tool.

As an example, the Plot tool is used to diagnose a
problem in a 16 QAM system. It is known that the output
signal is exhibiting extremely bad bit error rate
performance. Without a visual representation of the signal
flow of the system one can only speculate the cause of error.

In this example, the plot tool is used in order to observe
the frequency domain content of the signal in order to
determine if the poor BER performance may be a result of
interference. The FFT of the output of the interpolator
component (see Figure 2) exhibits a good signal to noise
ratio without any apparent interference.

Figure 2: Frequency domain plot

Since the spectrum at the output of the interpolator is

consistent with expectation, the output response of the next
component in the system, the frame synchronizer, is
analyzed. In this situation, the spectrum of the output signal
does not provide any insight, but the constellation diagram
of the signal does. As seen in Figure 3, the signal
constellation is exhibiting a phase rotation. Once this phase
rotation is detected, the developer is able to narrow his/her
search to areas in the code within the frame synchronizer
that could potentially cause a phase rotation.

Figure 3: Constellation plot with phase rotation.

An appropriate correction is made, and the resulting

constellation plot can be seen in Figure 4. With the phase
rotation removed, the system now exhibits a satisfactory
BER.

Figure 4: Constellation plot without phase rotation.

3.3 Write to File Tool

The “write to file” tool allows the developer to record
packets that are being sent from a component uses port.
This tool gives the developer the ability to observe packets
being sent anywhere throughout the waveform without
having to neither add any code to the component nor add
any “write to file” type components to the waveform. In the
case of a data radio, the “write to file” tool can serve as the
system’s application layer.

This use of data logging gives the developer the ability
to post process his/her data using any tool with the ability to
read data from a file. For example, a developer is able to
analyze the effects of multiple types of filters on his/her data
by post-processing in MATLAB or Octave.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Due to the Pythonic nature of the tool, formatting data
becomes trivial; for example, the developer can use Python's
built in XML parsers to write the data in XML format. By
having the flexibility to write data to whatever format the
developer desires, exchanging data with other software
packages does not require manual editing or a third software
package.

The method that the Write to File tool uses to obtain
data through the use of CORBA is identical to that of the
Plot tool (detailed in section 3.2). Built-in Python methods
are used to write the data to file at the push of a button.

3.4 The Arbitrary Waveform Generator Tool

Within the available ALF tool library there exists an
arbitrary waveform generator (AWG) tool. The tool allows
the developer to connect to an existing provides (input) port
in a running waveform. Once the connection is established,
the tool is able to send any arbitrary signal (as defined by
the developer) to the component. As long as the component
is capable of processing enough data in real time (either
through the use of efficient algorithms or buffering), the
AWG can send data to the component simultaneously with
data being sent through a previously existing connection.

Multiple options exist for the type of signal the
developer wishes to generate (or read from file) and "push".
In the file "sources.py" there exists a signal class "sources".
This class contains the method "get_sources_list" as well as
a method for each signal type the user wishes to define. The
default tool currently has 6 available signal types [1]. The
available signal types are defined in the "sources" __init__
attribute:

 def __init__(self,parent):
 self.parent = parent
 self.available_sources={
 'file': 'read_file()',
 'sine': 'gen_sine()',
 'cosine': 'gen_cosine()',
 'random': 'gen_random_data()',
 'zeros': 'gen_zeros()',
 'ones': 'gen_ones()'}

The "get_sources_list" method simply returns a list of
the available sources.

 def get_sources_list(self):
 return self.available_sources

This list of sources serves two purposes in the AWG.py
module. First, the list is used in the initialization of the
AWG GUI so that each source in sources.py can be selected
from in the GUI menu. When the AWG tool is running, the
developer is able to select the desired source, and the index

of the selected source then dictates which signal method is
called.

By having a Pythonic list of signals available, a
developer is able to easily add his/her own signal generation
code without having to edit any of the code in AWG.py;
therefore, knowledge of wxPython is not necessary for
adding signal sources to the wxPython tool. However, due
to the open-source nature of AWG.py a more experienced
wxPython user is still able to add his/her own graphical
switches/buttons/inputs to the GUI as he/she feels
necessary. The SCA nature of the tool as well as the
connections made also remains transparent to the developer,
but is still editable if necessary for more in-depth
debugging.

The "gen_sine" method is analyzed as an example of
the source methods available.

 def gen_sine(self):

 #initializations
 count = 0
 sine = []

 #recursively generate the sinusoid
 while count < self.parent.len:
 sine.append(math.sin(
 self.parent.freq * 2 *
 math.pi * count / self.parent.len))
 count = count + 1
 return sine

A variable "count" is initialized for the while loop. The
variable "sine" is declared as a Python list so that the
"append" method can be utilized. A Python list has been
selected as the standard return type for the source methods.
The list returned (in this case "sine") will be sent directly to
the component provides port. The type of data within the
list (e.g., short, float, or char) can either be set in the signal
source method or type-casted in the AWG.py file (in this
case, the latter option is used). The data type within the list
must be consistent with the data type of the provides port
being connected to (otherwise CORBA will throw an error).

In this example, the signal is recursively generated
using the Python "math" module. This approach for
generating the list can be replaced with more
efficient/appropriate approaches as desired by the developer.
The variables parent.freq (sinusoidal frequency) and
parent.len (desired length of the list) are inherited from the
GUI class. The use of inheritance allows the developer to
add switches/buttons/input to the GUI which set any desired
variable(s). For example, the developer can add an option
for phase noise variance in the GUI, which can then be set
as a class field that can be inherited by the "sources" class.
In the case that the developer wishes to generate signals that

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

are not easily or efficiently constructed by calling methods
from the Python math module, custom modules can be
written in other programming languages (commonly C).

Using the math library, or any other available library, a
developer can easily customize this method or generate new
method based on this method (e.g., Gaussian phase noise
could be added to the sinusoid if appropriate).

The "read_file" method exists for developers who wish
to generate their signals using other methods for whatever
reason. For example, a developer may desire to generate a
signal in MATLAB or use data that has been taken from
over the air.

 def read_file(self, parent):
 try:
 # attempt to open the file:
 my_file = open(parent.file_name, 'r')

 except IOError:
 print "error opening, or no file
 named " + parent.file_name
 return [] #return an empty packet

 # read the file as a single string
 data_from_file = my_file.read()
 my_file.close()

 # reformat the string by
 # removing any unwanted characters
 data_from_file.strip('\n')
 data_from_file.strip('[')
 data_from_file.strip(']')

 data_from_file =
 #break string into a list
 data_from_file.split(parent.delimiter)
 return data_from_file

Currently, the developer is able to specify two file
names in the GUI: one for the I channel and one for the Q
channel. The data delimiter can also be specified (though in
the current version the delimiter is hard coded to be a
comma). The "read_file" method attempts to open the file,
and if successful it reads data in the file as a string. The
data can then be reformatted as desired (in this case the
square-brackets generated by MATLAB are removed). The
tool's ability to reformat data facilitates interoperability with
other software packages that may parse data in different

formats. Once the data is reformatted, the Python method
"split" (available in the string library) breaks the data string
into a Python list that can then be returned to the parent.

The AWG frame contains a button labeled "Push
Packet". Once the desired options are set in the AWG GUI
and the Push Packet button is pressed, the I and Q signals
are generated by calling the appropriate method in the
sources class. The method "pushPacket" is called on the
port handle created when the connection was established:

 self.PortHandle.pushPacket(self.I,self.Q)

The data is now in the hands of the component that the
tool connected to. The pushPacket method can be called as
many times as the user desires. Due to the Pythonic nature
of the tool, it is trivial for the developer to add a loop that
recursively sends signals at the single push of a button.

4. CONCLUSION

In order to debug a system under development, as well as
validate the system’s correct functionality, many aspects of
the system must often be analyzed: timing, output
responses, standard compliance, etc. To effectively perform
this analysis it helps to have a tool that is capable of
performing several operations while allowing for
expandability for unforeseen debugging requirements. By
providing interoperability between existing tools, the
developer is able to take advantage of the strengths of each
tool he/she has available. The open source nature of ALF
allows for a variety of debugging abilities through tools,
such as timing, plotting, reading from file, and writing to
file. The Pythonic nature of the tools allows a developer to
adapt the tools to suit his/her needs.

[1] “Welcome to the OSSIE development site for software-

defined radio,” Accessed September 14, 2007 at
http://ossie.wireless.vt.edu/trac

This material is based in part upon work supported by
SAIC.
This material is based in part upon work supported by the
National Science Foundation under Grant No. 0520418.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

