

UPDATES TO THE NASA SPACE TELECOMMUNICATIONS RADIO SYSTEM
(STRS) ARCHITECTURE

Thomas J. Kacpura (ASRC Aerospace, Cleveland, OH, USA,

Thomas.J.Kacpura@nasa.gov); Louis M. Handler (NASA Glenn Research Center,
Cleveland, OH, USA, Louis.M.Handler@nasa.gov); Janette C. Briones (NASA Glenn
Research Center, Cleveland, OH, USA, Janette.C.Briones@nasa.gov); Charles S. Hall

(Analex Corporation, Cleveland, OH, USA, Charles.S.Hall@nasa.gov)

ABSTRACT

This paper describes an update of the Space
Telecommunications Radio System (STRS) open
architecture for NASA space based radios. The STRS
architecture has been defined as a framework for the design,
development, operation and upgrade of space based
software defined radios, where processing resources are
constrained. The architecture has been updated based upon
reviews by NASA missions, radio providers, and
component vendors. The STRS Standard prescribes the
architectural relationship between the software elements
used in software execution and defines the Application
Programmer Interface (API) between the operating
environment and the waveform application. Modeling tools
have been adopted to present the architecture. The paper
will present a description of the updated API, configuration
files, and constraints. Minimum compliance is discussed for
early implementations. The paper then closes with a
summary of the changes made and discussion of the
relevant alignment with the Object Management Group
(OMG) SWRadio specification, and enhancements to the
specialized signal processing abstraction.

1. INTRODUCTION

Since the original release of the STRS architecture,1,2
NASA has received comments. A consistent theme has
been to increase the detail of the architecture. NASA has
recently released STRS Architecture Standard Version
1.01,3 which is an update and has improved the details of
the software architecture. A key focus of the updates has
been refining the STRS infrastructure and the specific STRS
API.
 The STRS Infrastructure is part of the General Purpose
Processor (GPP) Operating Environment (OE) and provides
the functionality for the interfaces defined by the STRS API
specification. Once the waveform is deployed, the
infrastructure supports the waveform operations through the

STRS API and its internal subsystems. The infrastructure is
composed of multiple subsystems that interoperate to
provide the functionality to operate the radio. The
components shown in Figure 1-1 represent the high level
subsystems and services needed to control waveforms and
applications within the radio platform. These services are
provided by the platform infrastructure and support
applications as they execute within the radio platform.

 The infrastructure implements the STRS API. The
STRS API is the well-defined set of interfaces used by the
waveform applications to access specific radio functions or
used by the infrastructure to control the waveform
applications. The STRS API provides the interfaces that
allow applications to be instantiated and use platform
services. This API also enables communication between
waveform and application components. The STRS API
includes support of external interface commands for normal
radio operations. It hides the routine names actually used
by the STRS infrastructure from the waveforms to facilitate

Figure 1-1 STRS Infrastructure

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

portability. Although the STRS infrastructure may use any
combination of Portable Operating System Interface
(POSIX), real time operating system (RTOS), board support
package (BSP) functions, or other infrastructure methods to
support radio functions, which may vary on different
platforms, the STRS API will be identical to allow
portability.

2. STRS API

The STRS API provides an open software specification for
the application engineer to develop STRS waveform
application programs. The goal is to have a standard API
available to cover all application program requirements so
that the waveform programs can be reused on other
hardware systems with minimal porting effort and cost of
the waveform software (and firmware) development. Two
trade-offs in the development of the API specification are a)
the larger the API specification then the greater the software
overhead, which affects size, weight, and power (SWaP)
and b) standardization of the API which limits the ability to
use custom routines for optimization. The STRS API
definition minimizes dependencies on specific capabilities
of the GPPs.
 The API layer specification decouples the intellectual
property rights of platform, waveform, and module
developers. The API layer allows development and
interoperability of different radio aspects while protecting
the investment of the developers.

2.1. STRS Application Control API

A key aspect of a software-architecture is the definition of
the API that is used to facilitate software configuration and
control of the target platform. The philosophy, on which the
STRS architecture is based, avoids the conflict between
open architecture and proprietary implementations by
specifying a minimum API used to execute waveform
applications and deliver data and control messages to
installed hardware components.
 Figure 2-1 is a class diagram in Unified Modeling
Language (UML) that illustrates the inheritance between the
classes and the corresponding implementation objects in
C++. In a C or C++ implementation, it depicts the hierarchy
of include files. The figure also shows a grouping of API.
A waveform or service is a STRS Application
implementation object that must implement the STRS
Application Control API. The STRS Application Control
API is comprised of the STRS ComponentIdentifier, STRS
ControllableComponent, STRS LifeCycle, STRS
PropertySet, and STRS TestableObject API groups.

Figure 2-1 STRS Waveform/Device Structure

 STRS requires the methods shown in the table below to
be implemented by each waveform or service. The STRS
Application Control API shown below exhibits similar
functionality to a Resource Interface in the OMG
SWRADIO or SCA specifications except that the notion of
ports has been replaced with the optional source or sink.
The API may be implemented using the same OMG
SWRadio Platform-Independent Model (PIM).

STRS Application Control API
WF_Configure

Set values for one or more
properties in the waveform.

WF_GroundTest Perform unit and system testing
usually done on ground before
deployment. The testing may
include calibration. The method is
similar to WF_RunTest except that
it contains more extensive testing
that can be eliminated for actual
flight.

WF_Initialize Initialize the waveform to a known
initial state. Used to restart from
the beginning rather than from
where it left off.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

STRS Application Control API
WF_Query Obtain values for one or more

properties in the waveform.
WF_Read Method used to obtain data from the

waveform. Optional.
WF_ReleaseObject Free any resources the waveform

has acquired. An example would be
to close open files or devices.

WF_RunTest Test the waveform. The tests
provide aid in isolating faults within
the waveform.

WF_Start Begin normal waveform processing.
WF_Stop End normal waveform processing.
WF_Write Method used to send data to the

waveform. Optional.

2.2. STRS Infrastructure Application Control API

The Infrastructure Application Control methods correspond
to the STRS Application Control API exactly and are used
to access those methods. These methods are implemented
by the STRS infrastructure but may be used by any STRS
Application or any part of the infrastructure that is desired
to be implemented in a portable way. A handle ID is an
identifier that is used to control access to applications and
resources such as another waveform, device, file, or
message queue.

STRS Infrastructure Application Control API
STRS_Configure Set values for one or more

properties in the waveform (or
device).

STRS_GroundTest Perform unit and system testing,
including calibration, usually
done on ground pre-deployment.

STRS_Initialize Initialize the waveform. Used to
restart from the beginning rather
than from where it left off.

STRS_Query Obtain values for one or more
properties in the waveform (or
device).

STRS_Read Method used to obtain data from
a source or supplier.

STRS_ReleaseObject Free any resources the
waveform has acquired. An
example would be to close open
files or devices.

STRS_RunTest Perform built in test.
STRS_Start Begin normal waveform

processing.
STRS_Stop End normal waveform

processing.
STRS_Write Method used to send data to a

sink.

2.3. STRS Infrastructure Application Setup API

The Infrastructure Application Control Setup methods are
used in general or to control one waveform from another. A
handle ID is an identifier that is used to control access to
applications and resources such as another waveform,
device, file, or message queue.

STRS Infrastructure Application Control Setup API
STRS_AbortApp Abort a waveform or

service
STRS_GetErrorQueue Transform an error code

into an error queue.
STRS_GetSizeOfPropertie
s

Compute number of bytes in
a STRS Properties struct
containing a given
maximum number of STRS
Property name/value structs.
The number returned is used
to allocate space for the
STRS Properties struct.

STRS_HandleRequest The table of object names is
searched for the given name
and the handle ID is
returned that is used to
control access to another
waveform, device, file, or
message queue.

STRS_InitComplete Return initialization
completion status when the
task is initiated independent
of the completion.

STRS_InstantiateApp Instantiate a waveform or
service (or device).

STRS_IsOK Return true, if return value
of previous call is not an
error code.

STRS_Log Send log message for
distribution as appropriate.
Time stamp is added
automatically.

STRS_RemoveApp Remove specified waveform
or service from persistent
storage.

STRS_UploadComplete Return upload completion
status.

STRS_UploadRequest Begin or continue upload.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

2.4. STRS Infrastructure Device Control API

STRS Devices are controlled using the STRS Infrastructure
Device Control API shown in this section. A STRS Device
is a proxy for the data and/or control path to the actual
hardware. A STRS Device may use any available platform-
specific Hardware Abstraction Layer (HAL) to
communicate with and control the specialized hardware. A
STRS Device may also be used to hide the details of
networking from the waveform. The purpose of abstracting
the hardware interfaces in a standard manner is to make the
waveforms more portable. A STRS Device is a STRS
application that responds to the STRS Infrastructure
Application Control API calls as well as to the following
additional calls.

STRS Infrastructure Device Control API
STRS_DeviceClose Close the device.
STRS_DeviceFlush Send any buffered data

immediately to the underlying
hardware and clear the buffers.

STRS_DeviceLoad Load a binary image to the
device.

STRS_DeviceOpen Open the device.
STRS_DeviceReset Reinitialize the device. Reset is

normally used after the device
has been started and stopped,
before starting the device again.

STRS_DeviceStart Start the device.
STRS_DeviceStop Stop the device.
STRS_DeviceUnload Unload the device.
STRS_SetISR Set the Interrupt Service Routine

for the device.

2.5. STRS Infrastructure Memory API

These Infrastructure Memory methods are used to isolate
the memory manipulation on small and large platforms so
that the memory is used in a portable way. On a small
platform, the total available memory may be severely
limited. On a large platform, the total available memory
may be limited only by the size of a disk swap area. The
same methods are used in both situations for portability.

STRS Infrastructure Memory API
STRS_Clone Acquire a section of memory to use,

copy data into it, and return the new
memory location.

STRS_Release Release a section of memory previously
acquired with STRS_Clone or
STRS_Reserve.

STRS_Reserve Acquire a section of memory to use and
return the new memory location.

2.6. STRS Infrastructure Messaging API

The messaging methods allow STRS applications to use a
single target handle ID to send messages between
applications or to multiple parts of the radio. The ability for
waveforms to communicate with other STRS applications is
crucial for the operation of radio services as well as
separating the receive and transmit functionality between
two waveforms. The messaging API is implemented using
a form of the Observer or Publish-Subscribe design pattern.

STRS Infrastructure Messaging API

STRS_QueueCreate Create a queue.

STRS_QueueDelete Delete a queue.

STRS_Register Register an association between a
publisher and subscriber.

STRS_UnRegister Remove an association between a
publisher and subscriber.

2.7. STRS Infrastructure Time Control API

These Infrastructure Time Control methods are used to
access the hardware and software timers.

STRS Infrastructure Time Control API

STRS_GetNanoseconds Get the number of nanoseconds
from the STRS_TimeWarp
object.

STRS_GetSeconds Get the number of seconds
from the STRS_TimeWarp
object.

STRS_GetTime Get the current base time and
the corresponding time of a
specified type.

STRS_GetTimeWarp Get the STRS_TimeWarp
object containing the number of
seconds and nanoseconds in the
time interval.

STRS_SetTime Set the current time in the
specified clock/timer by
adjusting the time offset.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

STRS_Synch Synchronize clocks. The action
depends on whether the clocks
to be synchronized are internal
or external.

3. CONFIGURATION FILES

STRS configuration files shall contain platform and
waveform specific information for the installation and
customization of waveforms. Platform configuration files
provide the STRS infrastructure with information on what
hardware devices and modules are installed in the system.
The configuration files are used by the STRS Infrastructure
to determine what files, devices, waveforms, and services
are used by the STRS radio. The name of the starting
configuration file is specified on the command line when
initializing the STRS Infrastructure. If none is specified, a
mission specific default would be employed. A waveform
(STRS application) configuration file contains specific
information that 1) allows STRS to instantiate the
application; 2) provides default configuration values; and 3)
provides connection references to devices, queues, and
services needed by the application.
 The format of the configuration files shall be defined in
Extensible Markup Language (XML) using an XML
Schema. The XML Schema Definition Language is an
XML language for describing and constraining the content
of XML documents. The XML can be preprocessed to
optimize space on the STRS Radio memory while keeping
the equivalent content.
 One approach to accomplish the preprocessing, used in
the STRS Reference Implementation, is to use an XSL
transformation. Here the XSLT language, which itself uses
XPath, was used to specify how to transform the given
XML input into the desired output. One suggestion for a
more compact representation is S-Expressions, which could
be used if a more compact representation is desired.

3.1. Platform Configuration Files

The contents of a platform configuration file include a list
of hardware modules having memory able to contain data
and executable software. There is a unique module name
for each hardware module accessible from the current GPP.
The platform configuration file includes a list of memory
areas of various types (e.g. ROM, RAM), sizes, units, and
access. The platform configuration file includes a memory
map list which provides the base name, base address,
memory size, and memory read and write access. It also
contains a module type which is the name of the hardware
type. The module type may be the GPP, RF, FPGA, DSP,
ASIC, etc.

3.2. STRS Infrastructure Configuration Files

The STRS Infrastructure configuration data is one example
of the data that defines the infrastructure. The infrastructure
configuration file includes a list of files to read, write, or
append, from multiple locations using a handle ID. The file
data includes a handle name, file name, file type and file
access. The infrastructure configuration file includes a list
of devices to read or write from multiple locations using a
handle ID. The device data has a handle name, device
name, device type, device access, and attribute list. The
infrastructure configuration file includes a list of attributes
that are tested against specific values to indicate the health
of the system. The infrastructure configuration file includes
a queue list containing the correspondences between
publishers and subscribers.

3.3. STRS Waveform Configuration Files

A waveform (STRS application) configuration file contains
specific information that 1) allows STRS to instantiate the
application; 2) provides default configuration values; 3)
provides connection references to devices, queues, and
services needed by the application.
 An example of a Waveform Configuration File in XML
is shown in Figure 3-1:

Figure 3-1 Example STRS Waveform Configuration File

in XML

 The contents of a STRS Waveform configuration file
include a handle name, that is a unique shortened form of
the waveform name used in messages and a waveform
name, (usually a shortened form of the waveform that will
be the C++ class name). Access to the waveform may be
specified as read, write, both, or none. Read indicates that
the waveform implements WF_Read(). Write indicates that
the waveform implements WF_Write(). The initial state is

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

the state at which the waveform is left after processing the
configuration file. The state may be instantiated or running.
A file list contains a list of files to be loaded for execution
and includes the file name and the target module name. An
attribute list contains the list of properties having a name
and value pair set as the default during initialization.

4. STRS MINIMUM COMPLIANCE

A minimum compliance has been defined for systems
installed on constrained space platforms and that supports
upwards compatibility on larger platforms. It is expected
that this minimum compliance will be satisfactory on early
STRS platforms, enabling the experience and lessons
learned to feedback into further architecture definition. The
minimum compliance builds upon the previously defined
APIs and configuration files and adds the following
additional elements discussed below.
 Minimum compliance requires publishing the Hardware
Interface Definition (HID) and HAL, employing
configuration files defined in XML (described by a XML
schema), the use of selected POSIX subsets, and using the
minimum list of the STRS API. The HID has been
compared to an Interface Control Definition, with the
requirement to publish interfaces and the operating
requirements of the hardware system after delivery. The
HAL in the GPP is software that configures, controls, and
communicates with specialized hardware by abstracting the
physical hardware interfaces. The HAL API shall be
published so that specialized hardware made by one
company may be integrated with the STRS Infrastructure
made by a different company. Platform and Waveform
Configuration Files require the use of XML to describe the
contents; however an approach for the expected
transformation to a more compact form to meet space
memory requirements is suggested but not mandated as part
of the architecture.
 The STRS API is split into the STRS Application
Control API and the STRS Infrastructure API. A waveform
is a STRS Application and waveform developers must
implement the STRS Application Control API listed above
and defined in the STRS Architecture Standard. The STRS
Infrastructure is part of the OE and provides the
functionality for the interfaces defined by the STRS API
specification. The STRS infrastructure must implement the
STRS API listed to support applications as they execute
within the radio platform. Additional functionality must be
implemented in the STRS Infrastructure for radio robustness
and mission dependent requirements. In addition, radio
developers must provide the HID and HAL documentation.
 The STRS architecture requires that compliant radios
must use a POSIX conformant RTOS, or provide a POSIX
abstraction layer (minimum POSIX real time profile PSE51)
to provide the POSIX API missing from RTOS. For

constrained resource platforms, with limited software
evolutionary capability, where the waveform signal
processing is implemented in specialized hardware, the
suppler may request permission from NASA to only
implement a subset of POSIX PSE51 as required by the
portion of the waveforms residing on the GPP. The
waveforms created for this platform must be upward
compatible to a larger platform containing POSIX PSE51.
If none of the waveforms for a constrained resource
platform use any of the interfaces in a unit of functionality,
then the supplier may request permission from NASA to
eliminate that entire unit of functionality.
 The difference between a POSIX conformant RTOS
and a non-conformant RTOS is illustrated in Figure 4-1.
On the left side, the POSIX AEP is provided entirely by the
RTOS. The POSIX API is included for the RTOS. On the
right side, if the RTOS is not POSIX AEP conformant then
a POSIX Abstraction Layer must be provided to implement
the required missing functionality.

Figure 4-1 POSIX Compliant versus Conformant

5. CONCLUSION/ACKNOWLEDGEMENTS

The STRS architecture has been updated, focusing on key
elements of the software architecture. Reference
implementations and early STRS compliant radios are being
developed, and minimum compliance criteria are described.
Future planned updates include adding more detail to
specialized signal processing abstraction, the hardware
architecture, and providing a waveform developer’s guide.
 The authors would like to acknowledge the support of
the NASA STRS project team and the SDR Forum Space
Working Group (SWG). A key recommendation from the
SWG has been implemented, where possible, to align with
the OMG SWRadio specification, improving API definition.

6. REFERENCES

[1] “Space Telecommunications Radio System Open

Architecture Description,” December 2005.
[2] Thomas J. Kacpura, and Richard C. Reinhart, “STRS

Architecture Standard”, Revision 1.0, April 2006.
[3] Thomas J. Kacpura, and Richard C. Reinhart, “STRS

Architecture Standard”, Revision 1.01, June 2007.

POSIX Conformant RTOS

RTOS

POSIX
AEP

POSIX Compliant RTOS

RTOS

POSIX
Abstraction

Layer

POSIX
Compliant

RTOS

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

