
This work was completed while E. Stuntebeck, T. O'Shea, and J. Hecker were with the Laboratory for Telecommunications Sciences, US Department of Defense, which funded this research. The opinions
expressed in this document represent those of the authors, and should not be considered an official opinion or endorsement by the Department of Defense or US Federal Government.

PRACTICAL SIGNAL DETECTION AND CLASSIFICATION IN GNU RADIO

Timothy J. O'Shea (NC State University, Raleigh, NC; tim.oshea@ieee.org);

T. Charles Clancy (Department of Defense, College Park, MD; clancy@LTSnet.net);
Hani J. Ebeid (University of Texas, Austin, TX; HJEbeid@utexas.edu)

ABSTRACT

This paper selects a number of effective, general methods
for enabling signal detection, estimation, and classification
needs for cognitive radio. Implementations of algorithms
such as these are of key importance to Dynamic Spectrum
Access (DSA). These algorithms are decomposed into
logical blocks and then implemented in reusable GNU Radio
signal processing blocks. These blocks are then
demonstrated in an example GNU Radio application running
in a Linux environment, using a Universal Software Radio
Peripheral (USRP) as a radio frontend. A second USRP on
an unconnected host computer is used to generate the
relevant test signals used for training and
detection/classification trials.
 A key advancement presented in this work is
application of these algorithms to real-world signals input
from an RF frontend, rather than ideal signals generated in
MATLAB. We show that work is needed to normalize the
output of the USRP to make signal detection and
classification more robust.

1. INTRODUCTION

One of the most popular applications of cognitive radio is
that of Dynamic Spectrum Access (DSA). In DSA, radios
must monitor activity on a given segment of radio-frequency
(RF) spectrum and attempt to identify available unused
regions: regions belonging to primary user signals whose
service levels must not be degraded, and regions used by
other secondary users' signals with which we may wish to
communicate in order to form a cognitive radio network.
 For the purposes of distinguishing between primary and
secondary user signals, as well as establishing meaningful
communications with other secondary users, and effective
method for classification of observed signal modulation is
needed. This paper will focus on selecting effective
algorithms which have been presented in prior research,
implementing and connecting them to lay the detection and
classification foundation for a DSA capable cognitive radio
built by expanding upon the tools included in the GNU
Radio Project. The Universal Software Radio Peripheral
(USRP) and the Cell Microprocessor are targeted as an ideal

combination platform for this architecture due to their
capabilities, low-cost, and wide-spread availability.
 The remainder of the paper is organized as follows.
Section two discusses the system architecture within GNU
Radio. Section three details our experimental, laboratory
results. Section four outlines avenues of future research and
improvements to our implementation. Section five
concludes.

2. SYSTEM ARCHITECTURE

We can generally divide the task of receiving and
characterizing the observed RF into three different logical
groupings. The first consists of a number of generic receiver
functions which condition the received signal for further
processing or demodulation. The second consists of signal
detection and bandwidth estimation schemes. The third
consists of our signal modulation classification task.
 The implementation and interaction between these
components will depend on the specific GNU Radio
structure. The ultimate method in which GNU Radio will be
structured to take advantage of highly parallel platforms
such as the Cell Microprocessor has not yet been
determined. Consequently, we offer design considerations
which should allow our implementation to remain effective
should any of these methods be chosen.

2.1. GNU Radio on the Cell Microprocessor

GNU Radio consists of a number of radio processing
components referred to as blocks, which may be linked
together to form a useful waveform. Traditionally, each of
these blocks run in a single thread and a scheduler has been
used to run each block's work task when it has a non-empty
input queue. However in order to take advantage of the Cell
architecture, we will need to distribute this work load onto
multiple processors. This can be done through the expected
long-term approach of loading each block onto a Synergistic
Processing Elements (SPE) to form a traditional pipeline, or
through the short-term approach of simply offloading the
work from one or two distinct processor intensive blocks
onto available SPEs.
 In the short term approach, as shown in Figure 1, all
blocks are actually executed on the Power Processing

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Element (PPE). In the diagram, we show the movement of
both data, denoted Data x, through processing code blocks,
denoted BLK y. The GNU Radio blocks are threaded on the
PPE, and when BLK 1 finishes processing Data 1, BLK 2
starts. It makes a blocking call to task one or more SPEs
with performing some computation, such as an FFT. While
this thread is blocking, the BLK 1 thread is free to begin
preparing Data 2 until the SPEs return.
 The short-term method is primarily the approach we
will be targeting, as we attempt to parallelize as much of the
workload into PPE threads as possible and make blocking
SPE-based calls to do the heavy work.
 The long-term approach also pictured in Figure 1
should distribute an equal work load to each SPE, perhaps
by grouping logical signal processing blocks, and ideally
using the Cell's ring-bus topology in a linear fashion.
However this approach poses many additional challenges
with dividing and scheduling workloads which must be
addressed first; therefore, we will focus primarily on the first
method when considering our design.

2.2. Common Front End

The USRP combined with an appropriate daugherboard (we
used an 800-2400 Mhz board) provides the ability to
downconvert our tunable frequency band to IF, digitize the
signal at 64 MSPS using an AD9862 Mixed-Signal Front-
End Processor, and decimate this down to an appropriate
rate that we can move it over the 480Mbps USB 2.0
interface.
 The USRP is fully supported by GNU Radio, and very
little effort is required to add the appropriate source block
into our waveform. Since we can receive the decimated IF
for an arbitrary tunable center frequency decimated at a
selectable rate using this USRP source block, all that
remains is to ensure that we maintain an appropriate
dynamic range by adjusting the programmable gain
amplifier (PGA) on the AD9862. PGA control is
implemented as shown in Figure 2. It uses the GNU Radio
standard Stream-to-Streams, Serial-to-Parallel, and Keep-

One-In-N blocks. Additionally, a free-running python thread
generates statistics on the samples, and steps the PGA up or
down based on the sample vector mean falling above or
below preset thresholds. Lastly, the N parameter of the
vector decimation block, or period between updates
measured in vectors of samples, is modified when we
observe the correct or incorrect dynamic signal range. This
quickly achieves an ideal gain value while relinquishing
processing resources when not needed.

 Start Frequency Stop Frequency
Hole 1 2396031250 2399875000
Signal 1 2399937500 2400062500
Hole 2 2400171875 2403984375

Table 1: Values Inserted into RF Map

2.3. Signal Detection Block

The signal detection block operates as a simple energy
detector, performing thresholding and estimation on the
output of a time-averaged power spectral density (PSD).
The layout of this pathway is shown in Figure 3.
 The signal detection pathway begins by vectorizing
samples into groups of 512, and decimating the vectors to a
rate which we can sustain real-time processing. We then
apply a Blackman-Harris Window to each 512-sample
vector and take a 1-D, complex FFT, averaging the
magnitudes of each bin over many samples in the next block.
Finally, in the last block we calculate the mean and variance
of the averaged PSD in the estimation step, artificially
increasing the variance up to some minimum level, handling
the case of no signal being present. We then establish two
thresholds using these statistics, and divide the frequency

Figure 2: Common Signal Conditioning Pathway

Figure 1: Proposed GNU Radio on Cell Implementation.

Figure 3: Signal Detection Pathway

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

axis up into regions based on whether we fall under or over
these thresholds. The regions are defined by the following:

Confident free spectrum: P(f) < µ + 0.2σ
Confident signal spectrum: P(f) > µ + 3σ

 By using these regions to classify any given frequency
bin, and forming regions out of consecutive bins, we are
able to quickly characterize the observed signal space. In
the example shown in Figure 4 we see a GMSK signal
centered at 2.4 GHz being generated by another USRP
across the room. The observed regions are highlighted, and
the corresponding additions to the RF map are shown in
Table 1.
 Ultimately, a form of successive approximation should
be used during this step to subtract recognized signals from
the PSD, recalculate the statistics, and search for more
regions, until we hit our artificially increased sigma value.
The RF Map component which maintains a listing of the
various signal and hole regions should perform logical
unions and collision checking on signal and hole regions.
However for our purposes, a single pass is used currently
used during this step and provides a sufficient metric to
detect most signals without issue. From the region start and
end bounds we estimate the signal center frequency and
bandwidth by calculating the center as the mean of fend and
fstart and the width as fend – fstart.
 This is a rough process, which could certainly be
improved by a successive approximation algorithm which
re-tuned around the suspected center, increased the

decimation rate, and repeated the process until it achieved
the desired resolution. For our purposes a single pass was
implemented and robust estimation of fine signal movement
or bandwidth adjustment was not heavily tested.

2.4. Signal Classification Block

After insertion of a signal region into the RF Map as an
unclassified region, the classification control thread is
signaled. This section immediately re-centers the RF tuner
on the signal and sets the appropriate decimation on the
front end to maximize the achieved resolution of our signal
in the observation window. The energy detection flow graph
is then paused while the classification pathway runs on the
signal. This pathway is shown in Figure 5, and consists of
the common task of breaking IF samples into vectors and
reducing the data rate to something manageable, followed by
a component which looks for cyclostationary features in the
input signal by using the FFT Accumulation Method to
calculate the Spectral Correlation Density (SCD) Function
of the observed signal. This is then reduced to the alpha-
profile, and sent into the ANN classifier block for a
decision.
 As has been demonstrated [1], each known modulation
type will produce a different arrangement of peaks in its
SCD plot, due to both inter- and intra-symbol correlation
within the waveform. We can see in Figure 6 the ideal SCD
plot of a QPSK signal averaged over many sampling
periods. This arrangement of four clusters is common in
many modulations, and this scale does not provide enough
detail to highlight differences in the plots for various
modulations.
 Figures 7 and 8 compare an enlarged view of the
rightmost major detail on the alpha axis of the SCD plot for
both a QPSK signal and 4-FSK signal. The cyclostationary

Figure 4: Energy Detection on Observed Spectral Region

Figure 5: Signal Modulation Classification Pathway

Figure 6: SCD for QPSK

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

properties of each of these signals are clearly different by
observation. In order to allow our classifier to learn various
modulation methods and discern between them, we will use
the method proposed by Fehske, Gaeddert, and Reed [2] and
take the alpha profile of our SCD plot as a 1-D vector input
to an Artificial Neural Network (ANN) using the structure of
a Feed Forward Multi-Layer Perception Network (MLPN)
with back propagation [4].
 Our input layer consists of 129 neurons, each one
associated with a normalized bin value from the alpha
profile of our SCD. As in [2]’s design, we use a hidden layer
consisting of four hidden neurons, a learning rate of 0.05, a
learning momentum of 0.7, and a sigmoid symmetric
activation function for all neurons. Since we are initially
trying to classify only the three digital modulation types
currently supported for transmission under GNU Radio
(DBPSK, DQPSK, and GMSK), we will use a three neuron
output layer, with an orthogonal output vector associated

with each of the three modulation types. Training data for
the ANN is generated at run time through a graphical
interface which allows the user to specify which type of
modulation. It places the ANN in a learning mode, in which
it outputs the appropriate input and output layer data. Figure
9 shows a screen capture of the ANN training interface.
 Training the ANN weights at runtime proved to quickly
skew the data towards the class with the most trials. To fix
this we ultimately opted to write the training trials to a file
where they could be manually inspected and adjusted if
necessary for fairness. Upon initialization of the Classifier
block in GNU Radio, these trials are then read in from the
file and weights are calculated. The MSE of our output
vector, as we progress through this training progress, is
shown in Figure 10. This block uses the Fast Artificial
Neural Network (FANN) library to implement, train, and
execute the MLPN. FANN was chosen as it is already one
of the fastest implementations available for this purpose, and
the Vector Fast Artificial Neural Network (VFANN) project
plans to accelerate this even more in the near future by using
vector operations available on the graphics processing units
(GPU's) in inexpensive, widely-available video cards, which
we hope will be easily portable to the fast vector floating
point operations available on the Cell Processor’s SPEs.
The output vectors used for training consist of permutations
of {-1, -1, +1}, so to select the modulation chosen by this
classifier we must simply choose the index of
max(output_vector).

Figure 7: Detailed SCD for a 4-FSK Signal

Figure 8: Detailed SCD for a QPSK Signal

Figure 9: Artificial Neural Network Training Interface

Figure 10: Mean Square Error Durring MLPN Training

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

3. RESULTS

This design worked extremely well classifying signals, with
the exception of a few minor issues. It did not make sense to
present our results in the traditional SNR vs. detection rate
fashion because most of the significant observable error
could be attributed to several known factors which greatly
outweighed the false detection rate inherent to the actual
analytical method used. When these effects were not
observed, we received a correct signal classification an
overwhelming majority of the time (>95%). For more
information on the theoretical limits of using this
classification technique in varying SNR environments please
refer to [2] which explores this topic in much more detail.
 The PSD of the three narrow-band GNU Radio digital
modulations (DBPSK, DQPSK, and GMSK) were trained
on the order of minutes using a random stream of symbols as
input. They were all trained at a single signal level of
another stationary USRP transmitting from across the room
at the GNU Radio tx-amplitude 3e5. Therefore, this training
occurred in a typical indoor noise environment with a
roughly constant SNR of 30 dB.
 When manually adjusting the transmit signal power on
the transmitting USRP, we were able to retain our
classification ability for a wide range of observed SNR
values using our initial training. However, when attempting
to move the signal to another frequency or bandwidth, we
ran into issues. Since the classification block relies on the
center frequency and bandwidth of the signal to be
normalized when it receives its conditioned input, the
resolution to which we are tuning and decimating is not fine
enough, and we can observe gaps where fine changes in this
value result in movement of the signal within the
classification observation space. When making fine
adjustments to the bandwidth or frequency from those at
which it was trained, we can observe variable levels of

misclassification. However, typically if we fall within the
center of an FFT bin, and with a diatomic multiple of the
trained signal bandwidth (which does not fall outside the
minimum and maximum decimation constraints imposed by
the USRP) we are able to successfully classify.
Additionally, small variations in the automatic gain control
which were not seen during training often lead to
misclassification of signals.
 The resolution used in calculating our SCD was limited
by GNU Radio buffer constraints, and our AutoFAM output
was limited to 17x129, which was sufficient for the
successful classification described above. However, the
majority of the information used in making the classification
decision is localized in a few common areas of the plot,
where higher resolution would most likely contribute to our
correct classification rate. Figure 11 shows the similarity of
a small interest region of the alpha-profile for the three
modulation types.

4. FUTURE WORK

If this approach of performing classification on a completely
normalized signal is to be effective and robust in the long
term, several enhancements to this design are needed. Due
to the coarseness of the adjustments provided by the
programmable gain amplifier and diatomic, integer-only
decimation values allowed by the USRP front-end, either
much more fine control of these is needed at the front end.
Alternatively, another layer of software re-sampling and
signal-level normalization is required to condition the signal
for the classification pathway.
 An alternative to this may be to train the ANN with the
RF frontend in a variety of possible configurations. Much as
was done in [2] to train against signals at varying power
levels, we could train over the expected fine range of
bandwidths one would see between two coarse decimation
values. This could be done for both signal amplitudes
between two coarse programmable gain amplifier levels and
for signal center frequencies between the center frequencies
of two separate frequency bins. In these cases, as well as the
case of an increased output vector size due to more
modulation classes, we will need to re-evaluate the structure
of the MLPN to allow for more degrees of freedom.
 Another possible area to look at is using the output of
the MLPN to estimate a confidence estimate, which could be
useful in determining if we are seeing one of the modulation
classes we have trained against, or possibly something which
we have never seen before.
 Additionally, the issue of low resolution SCD output
could be addressed in a number of ways. One technique is
to serialize transfer of data between blocks, or combining
the data reduction of the alpha profile with the AutoFAM
component. Additional methods for increasing resolution in
various areas of the SCD plot could increase our resolution

Figure 11: Comparison of Alpha-Profiles of Three Modulations

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

and useful information upon which to base our
classification.

5. CONCLUSION

In this paper we have taken a variety of signal detection and
classification algorithms and implemented them within the
GNU Radio architecture. We looked at real-world
implementation issues that arise from operating with a real
RF receiver/digitizer system, such as the USRP.
 Many of the simulations completed as a part of current
implementations do not have to deal with the peculiarities of
automatic gain controllers, coarse signal decimation, and
center-frequency tuning. We showed that a real-world
implementation of these signal detection and classification
algorithms, such as would be necessary for dynamic
spectrum access radios, requires classification algorithms to
either be robust to these variations, or first normalize signals
prior to classification. Next steps for our research include
implementing this required normalization.

 Overall, we have shown that generic signal detection
and classification is achievable in GPP-based SDR systems,
but may the processing power associated with higher-
performance GPPs, such as the IBM Cell Processor.

REFERENCES

[1] E. L. Da Costa, “Detection and Identification of

Cyclostationary Signals,” IEEE Transaction on Signal
Processing, 1996.

[2] A. Fehske, J. Gaeddert, and J. H. Reed, “A New
Approach to Signal Classification Using Spectral
Correlation and Neural Networks,” Proceedings IEEE
DySPAN, pp 144-150, November 2005.

[3] T. Clancy, J. Hecker, E. Stuntebeck, T. O'Shea.
"Applications of Machine Learning to Cognitive Radio
Networks," IEEE Wireless Communications Magazine,
August 2007.

[4] J. A. Anderson, An Introduction to Neural Networks,
MIT Press, Cambridge, MA, 1995.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

