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ABSTRACT 
 
Application of Cognitive techniques is an upcoming 
paradigm in telecommunications, in which either a network 
or a radio can change its configurations and techniques, to 
communicate and manage efficiently in changing 
environment. Application of knowledge-based approach to 
embed computational intelligence in these network devices 
to achieve this object is of exploration by many researchers. 
 In this paper we propose an architecture for reasoning 
and interpretation over information gathered in form of 
context data. A prototype was developed that uses certain 
knowledge management tools as its components. We present 
an overview of the prototype and further discuss some of the 
results. Certain deployment strategies and open issues are 
also discussed in this paper. 
 
 

1. INTRODUCTION 
 
In telecommunications, especially wireless communications, 
there is a thrust towards usage of cognition in next-
generation networks and devices. The requirement here is 
that based on user needs and the situation of network, 
provision of radio resources and wireless services most 
appropriate to those needs is sought. Such requirement can, 
in general be satisfied by making the network devices 
automated as well as intelligent. Current research trends for 
next generation technology bring out strong relevance of 
embedded intelligence in various network functions. 
 Research towards provision of better end-to-end 
performance has led to conception of cognitive networks. A 
cognitive network has a cognitive process that can perceive 
current network conditions, and then plan, decide and act on 
those conditions. The network can learn from these 
adaptations and use them to make future decisions[1]. 
 The context data represents the dynamic state of various 
components within a cognitive network. The data is raw 
data, gathered with help of various sensors and monitors 
embedded or placed at various places within the network. A 
cognitive device can intelligently act only once it has 

correctly gauged the current ‘situation’. A ‘situation’ is in 
practice a compound state, based on various other context 
data. Inferring such meaningful situation out of raw data is 
the responsibility of a context interpretation function. 
 There are several middleware frameworks that are 
available to design systems that work with context data[2]. 
For example, SOCAM and CASS both provide holistic 
architecture to implement a context management subsystem. 
Especially within wireless networking domain, specialized 
frameworks for context management such as 
ContextWare[3] have started emerging. However, most of 
these architectures incorporate the interpretation function in 
partial way. That is, they do not use all possible sub-
functions involved in a joint, coordinated and synergistic 
fashion, but some. To have a framework that is stable, 
practical and is a superclass of all these partial architectures, 
will allow even more kind of intelligence requirements 
within a cognitive device/network to be implemented. Hence 
the focus of our work has been to strengthen the reasoning 
framework i.e. the interpretation function. 
 
1.1. Need within Reconfigurable Networks 
 
From an economic point of view[4], the path ahead lies in 
convergence and interworking of existing, emerging and 
future radio systems and mobile networks. Hence next 
generation networks are going to be highly heterogeneous. 
Reconfigurability will then be the enabling technique that 
aims to differentiate user perception in volatile radio 
conditions while optimizing the use of network resources. 
The goal of end-to-end reconfigurability project, E2R, in 
whose purview this work was done, is to address design 
evolutions for such networking in the context of 
telecommunication infrastructures. 
 Reconfiguration of various network components can 
only be done if the corresponding ‘situation’ requiring the 
reconfiguration action has been sensed a-priori. This 
necessitates the requirement of a context interpretation 
function. In the kind of network scenario discussed above, 
compounding raw sensor data coming from various sources 
and networks, of various types, at various rates and 
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mechanisms is never an easy task. Hence a structured 
approach to context interpretation is always favorable. 
 Further, one of the aims is to make our solution 
amenable to open-adaptivity. Open-adaptive implies that 
new adaptations can be discovered and it should be possible 
to upgrade the system at runtime for such further 
adaptations. It is an important requirement because while 
communication related adaptation space such as RAT switch 
etc. might be limited, the adaptation space related to the 
mobile device user can grow unlimited. Handling user needs 
is becoming increasingly important with the shift of service 
design from technology-oriented to user-centric. 
 Not much literature can be found which deals with a 
structured way for context interpretation. Also, architectures 
for conventional radio elements are not sufficient to handle 
such advanced capabilities. To have open-adaptive system, a 
modular and extensible architecture is required. This entails 
a formal fine-grained structure for context interpretation. 
Also, such structure will be flexible towards future advances 
in context-awareness and reasoning. Finally, such 
architecture can also be used to cater to providing context 
information at multiple aggregation levels. 
 The rest of the paper is organized as follows. Section 2 
places context interpretation within the bigger structure of 
autonomic computing model for reconfigurable systems. 
Section 3 lays the foundation of the architecture. Detailed 
architecture is presented in section 4. Implementation details 
and results are discussed in section 5 and 6 respectively. 
Section 7 presents some deployment options, while section 8 
concludes with discussing some open issues. 
 

2. AUTONOMIC COMPUTING, 
RECONFIGURABILITY AND INTERPRETATION 

 
The administration and management of complex information 
and communication systems in the future networking 
scenario comprises a significant part of overall operational 
expenditure that has raised the need for self-management.  
Autonomic computing emerges as a new paradigm[4] for 
managing such complex tasks at various levels without 
human intervention. The corresponding adaptivity also leads 
to increase in usability and effectiveness by taking system’s 
environmental context and self-information into account. 
 Following [4], there is a third level of evolution in 
design sophistication of networking systems, in which the set 
of multiple contexts of deployment is not known a-priori. 
One may note that engineered systems are generally 
designed with a known and specific context of deployment. 
In such cases, hence, there is a need for mechanism in the 
architecture to infer contexts and learn the pattern of context 
changes in addition to mechanisms of self-reconfiguration, 
that is, to realize autonomic capabilities. 
 The reconfigurability required to enable such autonomic 
capabilities is guided by the Cognitive networks paradigm 

defined earlier. It is an extension of cognitive radio 
paradigm, which in turn is an enabler of SDR, with 
introduction of learning capabilities for user, network 
context etc while focusing on end-to-end goals. Hence one 
can refer to the six-stage OOLPDA model[1] proposed by 
Mitola. This model is a direct extension the four-stage 
MAPE model referred by E2R[4]. 
 
2.1. Interpretation function within OOLPDA 
 
In order to be context aware, the network elements must 
interact with the outside world. This is accomplished via the 
cognition cycle, OOLPDA. The cycle is a model to a 
process that can perceive current network conditions, and 
then plan, decide and act on those conditions. Also, learning 
can happen from sensing effects of various adaptation acts, 
and be used to make future decisions. 
 The cognition cycle starts with observing the 
environment as well as self-conditions. This is done by 
collecting raw data from various sensors and monitors. The 
data is according to need to react to or act upon, according 
to systems’ management tasks and end-to-end goals. The 
model is mum on how the data is processed next, before the 
cycle moves into orientation phase. Here one can go back to 
MAPE model to understand the steps. The collected raw 
data is elaborated and organized through events. A situation 
is physically an event, and it indicates a change of state of a 
resource. To gauge occurrence of a potentially 
interesting(for example, dangerous, valuable, or important) 
‘situation’ needing reconfiguration in the managed system 
using these events, correlation with other events is required. 
The main goal of correlation is to enrich the meaning of the 
events by condensing the received events into a single event. 
Such task hence falls in the purview of ‘analysis’ stage. 
 Such condensed, observed (event) data is the input to 
next stage, where the cycle ‘orients’ itself by determining the 
priority associated with the input.  As can be seen now, the 
context interpretation function falls under the purview of 
‘analysis’ stage of MAPE, or ‘observe’ stage of OOLPDA. 
 
3. CONTEXT MODELING AND INTERPRETATION 

 
A requirement of autonomic communications is that the state 
description of ‘communication world’, i.e. the telecom 
infrastructure as well as the users, be explicitly represented 
in machine-processable form. This description is essentially 
the context information, which by definition, surrounds, or 
gives meaning to, an entity. The complexity of 
reconfiguration planning and action mentioned before can be 
resolved only by exploiting the interdependencies among 
components of this ‘communication world’, systematically. 
 A context model is needed to define and store context 
data in the required machine-processable form. A survey by 
Strang et al[5] classified the most relevant context modeling 

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



approaches. The conclusions of their evaluation show that 
ontologism is the most expressive model and fulfills most of 
their six requirements for context-aware systems. 
 
3.1. Ontology-based Modeling 
 
In context of this paper, ontology provides a set of 
definitions and relations between concepts relevant for 
networking, device, services, users etc. The introduction of 
ontology-based explicit models of resources within a 
network enables the network to deal with policy-based goals 
on a higher abstraction level. Ontologies are key 
requirements because [6] 1) a common ontology enables 
knowledge sharing in an open and dynamic distributed 
systems such as the vast networking scenario mentioned 
before, 2) ontologies enable machine-processing, and 3) 
ontologies allow devices and agents not expressly designed 
to work together to interoperate. This requirement is 
especially meaningful in a heterogeneous network.  
 
3.1.1. Ontology and Logic 
For machine-processability, it is required to access explicitly 
represented knowledge and to process it. Ontologies allow 
machine-processing of context data by enabling formal 
reasoning over them. It is reasoning that lends the system 
capability of intelligence. Reasoning as a function has 
foundations in formal logic. A logic allows the 
axiomatization of the domain information, and the drawing 
of conclusions from that information. Hence ontologies are 
represented using various languages, whose semantics is 
based on various logics. 
 Logics are generally organized in terms of their 
expressivity[7] which represents the ability to say things 
more precisely. Unfortunately, along with expressivity, 
comes the difficulty of reasoning with the logic. Some logic 
can be so expressive that reasoning can go into infinite loop. 
There are also computational complexity issues with these 
logics. For that matter, in popular ontology languages, finite 
expressive logic such as description logic is most used. 
 
3.1.2. Ontology Languages 
There are wide varieties of languages for explicit 
specification of concepts and relations for context 
information. The graphical notations include UML and RDF 
while the (description) logic-based notations include 
DAML+OIL, OWL etc.  The actual instantiated-from-
concepts context data is specified using notations such as 
RDF. Typical features of such instances can be found in [2]. 
OWL Language is an extension of RDF; hence it is possible 
to associate an instance pool with an OWL ontology. All 
information is organized in so-called OI-models(ontology-
instance models), containing ontology entities (concepts and 
properties) and their instances. This allows grouping of 

concepts with their instances into self-contained units. Such 
a grouping is also referred to as Knowledge Base. 
 
3.2. Ontology-based Interpretation 
 
While the context information can be stored and represented 
using ontologies, the “intelligence” is implemented by 
context interpretation engine, which reasons over the context 
information. Classically, ontology based methodologies 
have been well explored for performing interpretation in 
systems predominantly at application level. But the 
approach could be extended further to cover all other 
entities in a cognitive network by integrating information 
about radio resources, protocols and user actions. Suitable 
mechanisms for context interpretation are required here to 
process the raw context data to bring out meaningful higher 
level abstractions. These mechanisms are generally provided 
in form of various ontology rules. 
 Ontology rules provide a way to define behaviour in 
relation to a system model. There are generally two types of 
rules[8]. Correlation rules correlate various context event 
data mainly to enrich the meaning of events, and to reduce 
the number of events. Action rules enable taking action over 
these enriched context events via various system policies. 
 One can see that the context interpretation function is 
limited to using correlation rules in the above context. 
Popular schemes for specifying correlation rules include 
RuleML, and recently, SWRL. SWRL is an extension of 
OWL DL. Hence specifying rules in conjunction with 
ontological terms and data becomes an easier task. SWRL 
extends the expressivity of OWL at the expense of the 
decidability of query answering operations. In order to cope 
with this problem, several decidable subsets of SWRL have 
been identified and investigated, including DL-safe rules. 
 

4. SYSTEM ARCHITECTURE 
 
The detailed architecture for implementing context 
interpretation function into cognitive radios and networks is 
described in the following sections. The blocks in grey relate 
to context provisioning issue, and are discussed briefly only 
to provide completeness to the interpretation architecture. 
 
4.1. Syntax Conversion 
 
Context data is generated mainly by sensors(exception: 
profile data), and they are not in general owned by the 
network owner/service provider. Since they are pervasive 
and hence vast in numbers, there is a high chance that their 
outputs are in different formats. Thus, for transportation 
purposes, a wrapper mechanism is required for context data 
to arrive at the interpretation point in single format. XDI is a 
promising technology in that aspect[9]. 
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 Because we used ontologies to represent context 
information, we chose RDF as the suitable candidate for 

storing context data. Hence it makes sense to convert the 
data into RDF format at early stage itself. 

Figure 1: Architecture for Context Interpretation 
 
4.2 Context Abstraction 
 
Analyzing context data is difficult if the data is not 
normalized into a common, complete, and consistent model. 
Preparing context data for analysis entails not only 
reformatting the data for better processing and readability, 
but also moulding it into its most cohesive pieces. Further, it 
includes filtering out unwanted information to reduce 
analytical errors or misrepresentations. The capabilities 
employed for this purpose are discussed as follows. 
 
4.2.1 Initial Preprocessing 
The main function here is data reformatting. The requested 
data may be retrieved from several context sources. Each of 
these context sources may use different interfaces, protocols 
and data formats to exchange information. Hence this 
information is aggregated into one common data model, 
before further usage. For example, in a usecase, we 
implemented a method to change data timestamp format. 
To aggregate into one common format, mappings need to be 
defined between the data formats used by each of the context 
sources and the common data format. Content MathML is 
one of the languages fitting this requirement. 
 
4.2.2 Data Approximation 
Sometimes incompleteness of some data can be worked out 
by approximating, rather than re-asking for its more precise 
sensing. This can include, for example, resampling, 
interpolation/extrapolation, statistical parameter estimation 

etc. Generally, a user-provided library of methods is used, 
For example, remaining battery life is generally an 
approximation. 
 
4.2.3 Data Fusion 
Data fusion is the combining of context data from multiple 
disparate sources such that the resulting information is in 
some sense better than would be possible when these 
sources were used individually. The term better is obviously 
desirable, and can mean more accurate, more reliable, more 
meaningful, more complete, or refer to the result of an 
emerging view of same data object, e.g. stereoscopic vision. 
 At times, user’s behavior pattern also needs to be 
recognized for prediction and usage. Feature extraction from 
a window of data, for this purpose, logically becomes part of 
data fusion. 
 The data sources may be similar, such as antennas, or 
dissimilar, such as electro-optic or acoustic sensor. A key 
issue is to deal with conflicting data, producing interim 
results that can be revised as more data becomes available. 
 
4.3 Data Validation 
 
Context data, before being stored for usage, needs to be 
filtered. Filtering generally involves eliminating incorrect, 
invalid or unknown data. For example, reasoning could 
determine that two context sensors have provided really 
different location information, which is an inconsistency. At 
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times, given ontological restrictions, there may outliers of 
the raw context data, which need to be removed. 
 Further, this module must be used to check the 
consistency/integrity of the knowledge base, at the juncture 
when another piece of information is about to be added. This 
requires entailment reasoning, and hence an ontology 
reasoner’s support is required for data validation. 
 
4.4 Knowledge Database 
 
A knowledge base is a special kind of database for 
knowledge management. It provides the means for the 
mechanized, computer-readable collection, organization, 
and retrieval of knowledge in form of (context) data. Due to 
machine-readability, automated deductive reasoning can be 
applied to them. The bases contain a set of data, often in the 
form of facts that describe the knowledge in a logically 
consistent manner. An OWL ontology directly maps to a DL 
Knowledge Base K = �T, A�, where T is set of TBox and A 
is set of ABox axioms[7]. Our work required this kind of 
knowledge base to be used, based on description logic. 
 Physically, the knowledge base stores the context data 
in RDF syntax in the form of C(x) or R(x,y). A snapshot of 
OI model in OWL, from knowledge base is in the figure 
below. For example, it tells that there is an employee 
instance, ‘Ryan’, who is linked to a BatOpTerminal(battery-
operated terminal) instance ‘Laptop’ via hasTerminal 
property.  

Figure 2: Snapshot of Knowledge Base 
 
4.4.1 Other Components 
Classically, a knowledge base only consists of Abox and 
Tbox rules. However, storage is also needed for various 
rules as well as abstraction methods/formulas. In certain 
implementations, storage for these can be clubbed with 
ontological data storage.  
 
4.5 Context Data Reasoning 
 
As we saw earlier, data validation requires the service of an 
ontology Reasoner. Checking integrity of data in a 
knowledge base, detection of redundancies, and property 
refinement are some of the used functions of a DL reasoner. 
 
4.6 Rule-based Reasoning 

 
In OWL, it is not straightforward to join two property 
instances in a <subject predicate object> form. For example, 
it is not possible to deduce, “I am in a room with no 
coverage”. Similarly, it is not possible to make temporal 
statements in OWL, something which is a must for dynamic 
domain such as wireless networks. A lot many times, 
reasoning over context history is needed to detect an event. 
 Also, in OWL it is difficult to reason on a subset of a 
given ontology, since the OWL reasoner takes all available 
knowledge as input and there is no standard way of only 
providing a part of this knowledge based on certain criteria. 
To improve performance, decreasing the amount of 
information that is used to perform the reasoning is needed. 
 One of the better options to handle these problems is to 
use more expressive languages than OWL. SWRL, 
introduced before, is an example, which allows to reason on 
composite relations using rules. Data reasoning rules run on 
basis of symbolic fusion in order to generate higher-order, 
implicit context. The correlation rules could either be 
stateless rules, considering events in isolation, or be state-
based rules, analyzing events gathered over time. The new 
generated data needs to be stored back into knowledge base 
to support querying. 
 For example, in a particular case, the only available 
information on the location of a user could be that he is in a 
specific meeting. However, this might not be the required 
information since the requestor expected geographical 
location information with a specific quality of context. 
Based on other information available – like the building the 
meeting is taken place, other attendees that might be present, 
etc. – this information could still be derived. An example 
rule from one of our usecases is as follows. It says that if an 
employee has a terminal that has a battery which will last till 
time x, and the employee is found to be traveling via a travel 
booking from his daily work plan, and if time x is found to 
be less than the end time of employee’s travel, then the 
battery needs charging(new information). 

Figure 3: Example SWRL Rule 
 The rule-based reasoning may require to be done 
iteratively till some point, because the new information may 
further correlate with other present information. 
 
4.6.1 Data Completeness Management 
For state-based correlation, one needs to wait for data to 
arrive before a set of rules can be applied. This can be 
achieved by implementing various FSMs. One cannot 
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assume that all sensors always active. Hence at times, when 
a decision needs to be taken without waiting long, this 
function can trigger a data fetch as well. 
 
4.6.2 Data Fetch Management 
This function manages local loops of various fetch requests 
placed by various modules. 
 
4.6.3 Profile Data and Rule Reasoning 
User preferences, generally captured using various profiles, 
can influence interpretation. For example, a reduction in 
user memory partition can lead to blockage of a software 
download. Thus, sensed data, and shared profile data are 
both considered during reasoning. 
 It is expected that profile data is in a different format, 
and hence it needs to be translated before used. 
 
4.7 Event Triggering 
 
To implement a push, the output of context interpretation 
function is fed into various other stages of the cognitive 
cycle. The output can be transferred to corresponding 
modules using events representing an implicit context. 
 A way to fetch such events includes the decision 
module etc. registering themselves with the context broker 
module, to be notified of particular events. In turn, the 
broker needs to monitor any context information that might 
be relevant for each of the modules that have registered. As 
soon as a particular type of context information changes, this 
is noticed by the context mediator, which notifies the 
applications that have registered for this event. 
 
4.8 Information Querying 
 
To implement a pull, i.e. the other way to know that a 
situation has occurred, is by querying the knowledge base. 
In this process, the modules retrieve current data from the 
base, and at times, further use the rule reasoner to fuse and 
to figure out whether a situation has arisen. 
 Multiple queries may happen concurrently in practice. 
Hence a query management module is required. In case 
queried information is unavailable, this module also needs to 
commission data sources. Reasoning capabilities might be 
useful to a certain extent to classify context sources and 
sinks that receive and provide particular context 
information, and thus to help in matching. 
 

5. SYSTEM IMPLEMENTATION 
 
An initial proof-of-concept system has been implemented 
and tested using use-cases that illustrated feasibility of such 
an architecture. The system was implemented as a tool-chain 
using tools from semantic web technology area. OWL was 
chosen as the ontology language, RDF as the context data 

language, while SWRL was chosen as the rule language. 
Being extension of OWL, it is easy to store SWRL rules 
with OWL, RDF information. The popular query language 
to RDF database is SPARQL, and we chose this language 
for our use. 
 Protégé-OWL plugin was used as the basic framework, 
because it solved most of the integration problems. 
1. Protégé is based on Java, as well as most other tools. 
2. Protégé supports exactly the same fragment required for 

our work – OWL-DL. 
3. Protégé has a built-in knowledge base container. 
4. Protégé allows editing and storage of SWRL rules in the 

knowledge base. 
5. Protégé supports rule engine integration, especially with 

JESS. 
6. Protégé also attaches to various OWL reasoners easily, 

such as Pellet or RacerPro. 
 We chose Pellet as ontology reasoner for ease of 
integration as well as license issues. Similarly, JESS was 
chosen as the rule reasoner. To support SPARQL query, we 
used JENA framework. The entire integration work was 
carried out in Java language. 
 Work is in progress to design and integrate generic 
modules for various context abstraction functions such as 
data fusion. It is envisaged that a lot of formula-based 
processing will be involved. Possibilities of integrating a 
lightweight Content MathML interpreter are being explored. 
By generally extending definition of a knowledge base, and 
by using annotations, one can incorporate logical 
responsibility for being able to store MathML formulas in 
the database. Alternatively, especially for approximation, 
use of built-ins of SWRL is also being considered. 
 

6. OBSERVATIONS 
 
The prototype was tested by us for some usecases for 
functional as well as performance studies. The first 
performance bottleneck was found in full validation of 
knowledge base, when some new information was added. 
We changed a runtime parameter of Pellet to make it do 
quick, incremental reasoning. We experimented with 
iterations over rule-based reasoning, but could not gain 
clarity over when to stop. 
 As the size and complexity of ontology model using 
OWL DL increased, we found it very time-consuming to fix 
semantic defects, even after enough experience with the 
language. We found the debugging support in Protégé is not 
strong. Especially in scenarios, where the ontology may get 
updated after learning, it makes sense to experiment with 
ontology repair systems.  
 For validation, we had tried using DIG socket-based 
tunneling mechanism. However, as many people have faced, 
we too faced problems in working with some OWL 
constructs via DIG version 1.0, which is current but 
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incomplete. Hence we switched over to direct, API-based 
integration. The time-performance for our medium-sized 
ontologies drastically increased. The Protégé-JESS bridge 
exports only those facts that are relevant to the set of rules 
being executed, and hence time-performance was 
satisfactory. Overall, the time taken at various steps for a 
database of 23 concepts, 39 properties and 149 
concept/property instances was found to be of order of 100 
ms on a Pentium-IV processor-based desktop. 
 

7. DEPLOYMENT STRATEGIES 
 
For cognitive networks, the context server approach to 
architecture deployment[2] seems to us the most suitable. 
This approach permits multiple client access to remote data 
sources. The server deals with both the context provisioning 
as well as the interpretation aspects. For provisioning, an 
access managing and a gathering component are envisioned. 
Since end cognitive devices such as mobile handsets have 
resource limitations in computation power, disk space etc., 
this approach relieves such clients of resource intensive 
operations, which are performed on the server. Doing it 
centrally also increases re-usability of cached results by 
multiple clients, and hence increases net network 
performance. On the flip side, appropriate protocols and 
QoS issues for client-server architecture need to be worked 
out. Since historical context data is also required by various 
clients, and that the maintenance of context history is mainly 
a memory concern, the server approach fits well in this 
requirement as well. Most of the context management 
frameworks surveyed exhibit strict division of the context 
data acquisition and use. Thus context sources become 
reusable and are able to serve a multitude of context clients. 
 To avoid different applications trying to contact the 
server for recent information, local caching of results is 
suggested. This caching may be distributed e.g. over 
multiple base stations in order to minimize retrieval time. 
Further, an extension in form of distributed, layered 
approach is also possible. It is expected that not all 
interpretation sub-functions will be required in various 
deployment scenarios. Certain required context abstraction 
functions, which do not require major resources, can be part 
of a lower layer doing part of interpretation locally, before 
handing over control flow to upper layer in the server. 
Certain interpreted information such as spectrum availability 
may be broadcast using E2R concepts such as cognitive pilot 
channel and resource awareness channels[10]. 
 

8. OPEN ISSUES 
 
One of the open issues is the footprint requirement of such 
an architecture. In E2R, it is being debated whether the 
interpretation function will be pushed into a cognitive 

device. In such a case, number of tools need to be cut down. 
Evolution of Pellet holds much promise, because it specifies 
support for better querying and rule execution integration in 
future. 
 Another problem in the presented approach is the 
variety of used context encodings found in practice. Every 
system and framework uses its own format to describe 
context and its own communications mechanisms. 
Standardization of formats such as XDI/XRI and protocols 
holds key to resolving this issue. 
 The interpretation function for cognitive networks, 
that’s driven by OOLPDA model, can’t be complete without 
a learning element. Machine learning at top of Bayesian 
Networks’ based inference can be explored in this aspect. 
 

9. CONCLUSION 
 
We have described and validated an architecture for context 
interpretation that is based on ontologies. The usage of rules, 
facts etc has been demonstrated within the prototype for this 
architecture. Further evolution of architecture in terms of 
design and performance is expected, as more and more open 
issues get addressed.  
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