

A CONTEXT INTERPRETATION FRAMEWORK FOR COGNITIVE

NETWORK DEVICES

Hrishikesh Sharma(Tata Consultancy Services Ltd., Bangalore, Karnataka, India,
hrishikesh.sharma@tcs.com);

Balamuralidhar P(Tata Consultancy Services Ltd., Bangalore, Karnataka, India,
balamurali.p@tcs.com)

ABSTRACT

Application of Cognitive techniques is an upcoming
paradigm in telecommunications, in which either a network
or a radio can change its configurations and techniques, to
communicate and manage efficiently in changing
environment. Application of knowledge-based approach to
embed computational intelligence in these network devices
to achieve this object is of exploration by many researchers.
 In this paper we propose an architecture for reasoning
and interpretation over information gathered in form of
context data. A prototype was developed that uses certain
knowledge management tools as its components. We present
an overview of the prototype and further discuss some of the
results. Certain deployment strategies and open issues are
also discussed in this paper.

1. INTRODUCTION

In telecommunications, especially wireless communications,
there is a thrust towards usage of cognition in next-
generation networks and devices. The requirement here is
that based on user needs and the situation of network,
provision of radio resources and wireless services most
appropriate to those needs is sought. Such requirement can,
in general be satisfied by making the network devices
automated as well as intelligent. Current research trends for
next generation technology bring out strong relevance of
embedded intelligence in various network functions.
 Research towards provision of better end-to-end
performance has led to conception of cognitive networks. A
cognitive network has a cognitive process that can perceive
current network conditions, and then plan, decide and act on
those conditions. The network can learn from these
adaptations and use them to make future decisions[1].
 The context data represents the dynamic state of various
components within a cognitive network. The data is raw
data, gathered with help of various sensors and monitors
embedded or placed at various places within the network. A
cognitive device can intelligently act only once it has

correctly gauged the current ‘situation’. A ‘situation’ is in
practice a compound state, based on various other context
data. Inferring such meaningful situation out of raw data is
the responsibility of a context interpretation function.
 There are several middleware frameworks that are
available to design systems that work with context data[2].
For example, SOCAM and CASS both provide holistic
architecture to implement a context management subsystem.
Especially within wireless networking domain, specialized
frameworks for context management such as
ContextWare[3] have started emerging. However, most of
these architectures incorporate the interpretation function in
partial way. That is, they do not use all possible sub-
functions involved in a joint, coordinated and synergistic
fashion, but some. To have a framework that is stable,
practical and is a superclass of all these partial architectures,
will allow even more kind of intelligence requirements
within a cognitive device/network to be implemented. Hence
the focus of our work has been to strengthen the reasoning
framework i.e. the interpretation function.

1.1. Need within Reconfigurable Networks

From an economic point of view[4], the path ahead lies in
convergence and interworking of existing, emerging and
future radio systems and mobile networks. Hence next
generation networks are going to be highly heterogeneous.
Reconfigurability will then be the enabling technique that
aims to differentiate user perception in volatile radio
conditions while optimizing the use of network resources.
The goal of end-to-end reconfigurability project, E2R, in
whose purview this work was done, is to address design
evolutions for such networking in the context of
telecommunication infrastructures.
 Reconfiguration of various network components can
only be done if the corresponding ‘situation’ requiring the
reconfiguration action has been sensed a-priori. This
necessitates the requirement of a context interpretation
function. In the kind of network scenario discussed above,
compounding raw sensor data coming from various sources
and networks, of various types, at various rates and

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mechanisms is never an easy task. Hence a structured
approach to context interpretation is always favorable.
 Further, one of the aims is to make our solution
amenable to open-adaptivity. Open-adaptive implies that
new adaptations can be discovered and it should be possible
to upgrade the system at runtime for such further
adaptations. It is an important requirement because while
communication related adaptation space such as RAT switch
etc. might be limited, the adaptation space related to the
mobile device user can grow unlimited. Handling user needs
is becoming increasingly important with the shift of service
design from technology-oriented to user-centric.
 Not much literature can be found which deals with a
structured way for context interpretation. Also, architectures
for conventional radio elements are not sufficient to handle
such advanced capabilities. To have open-adaptive system, a
modular and extensible architecture is required. This entails
a formal fine-grained structure for context interpretation.
Also, such structure will be flexible towards future advances
in context-awareness and reasoning. Finally, such
architecture can also be used to cater to providing context
information at multiple aggregation levels.
 The rest of the paper is organized as follows. Section 2
places context interpretation within the bigger structure of
autonomic computing model for reconfigurable systems.
Section 3 lays the foundation of the architecture. Detailed
architecture is presented in section 4. Implementation details
and results are discussed in section 5 and 6 respectively.
Section 7 presents some deployment options, while section 8
concludes with discussing some open issues.

2. AUTONOMIC COMPUTING,
RECONFIGURABILITY AND INTERPRETATION

The administration and management of complex information
and communication systems in the future networking
scenario comprises a significant part of overall operational
expenditure that has raised the need for self-management.
Autonomic computing emerges as a new paradigm[4] for
managing such complex tasks at various levels without
human intervention. The corresponding adaptivity also leads
to increase in usability and effectiveness by taking system’s
environmental context and self-information into account.
 Following [4], there is a third level of evolution in
design sophistication of networking systems, in which the set
of multiple contexts of deployment is not known a-priori.
One may note that engineered systems are generally
designed with a known and specific context of deployment.
In such cases, hence, there is a need for mechanism in the
architecture to infer contexts and learn the pattern of context
changes in addition to mechanisms of self-reconfiguration,
that is, to realize autonomic capabilities.
 The reconfigurability required to enable such autonomic
capabilities is guided by the Cognitive networks paradigm

defined earlier. It is an extension of cognitive radio
paradigm, which in turn is an enabler of SDR, with
introduction of learning capabilities for user, network
context etc while focusing on end-to-end goals. Hence one
can refer to the six-stage OOLPDA model[1] proposed by
Mitola. This model is a direct extension the four-stage
MAPE model referred by E2R[4].

2.1. Interpretation function within OOLPDA

In order to be context aware, the network elements must
interact with the outside world. This is accomplished via the
cognition cycle, OOLPDA. The cycle is a model to a
process that can perceive current network conditions, and
then plan, decide and act on those conditions. Also, learning
can happen from sensing effects of various adaptation acts,
and be used to make future decisions.
 The cognition cycle starts with observing the
environment as well as self-conditions. This is done by
collecting raw data from various sensors and monitors. The
data is according to need to react to or act upon, according
to systems’ management tasks and end-to-end goals. The
model is mum on how the data is processed next, before the
cycle moves into orientation phase. Here one can go back to
MAPE model to understand the steps. The collected raw
data is elaborated and organized through events. A situation
is physically an event, and it indicates a change of state of a
resource. To gauge occurrence of a potentially
interesting(for example, dangerous, valuable, or important)
‘situation’ needing reconfiguration in the managed system
using these events, correlation with other events is required.
The main goal of correlation is to enrich the meaning of the
events by condensing the received events into a single event.
Such task hence falls in the purview of ‘analysis’ stage.
 Such condensed, observed (event) data is the input to
next stage, where the cycle ‘orients’ itself by determining the
priority associated with the input. As can be seen now, the
context interpretation function falls under the purview of
‘analysis’ stage of MAPE, or ‘observe’ stage of OOLPDA.

3. CONTEXT MODELING AND INTERPRETATION

A requirement of autonomic communications is that the state
description of ‘communication world’, i.e. the telecom
infrastructure as well as the users, be explicitly represented
in machine-processable form. This description is essentially
the context information, which by definition, surrounds, or
gives meaning to, an entity. The complexity of
reconfiguration planning and action mentioned before can be
resolved only by exploiting the interdependencies among
components of this ‘communication world’, systematically.
 A context model is needed to define and store context
data in the required machine-processable form. A survey by
Strang et al[5] classified the most relevant context modeling

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

approaches. The conclusions of their evaluation show that
ontologism is the most expressive model and fulfills most of
their six requirements for context-aware systems.

3.1. Ontology-based Modeling

In context of this paper, ontology provides a set of
definitions and relations between concepts relevant for
networking, device, services, users etc. The introduction of
ontology-based explicit models of resources within a
network enables the network to deal with policy-based goals
on a higher abstraction level. Ontologies are key
requirements because [6] 1) a common ontology enables
knowledge sharing in an open and dynamic distributed
systems such as the vast networking scenario mentioned
before, 2) ontologies enable machine-processing, and 3)
ontologies allow devices and agents not expressly designed
to work together to interoperate. This requirement is
especially meaningful in a heterogeneous network.

3.1.1. Ontology and Logic
For machine-processability, it is required to access explicitly
represented knowledge and to process it. Ontologies allow
machine-processing of context data by enabling formal
reasoning over them. It is reasoning that lends the system
capability of intelligence. Reasoning as a function has
foundations in formal logic. A logic allows the
axiomatization of the domain information, and the drawing
of conclusions from that information. Hence ontologies are
represented using various languages, whose semantics is
based on various logics.
 Logics are generally organized in terms of their
expressivity[7] which represents the ability to say things
more precisely. Unfortunately, along with expressivity,
comes the difficulty of reasoning with the logic. Some logic
can be so expressive that reasoning can go into infinite loop.
There are also computational complexity issues with these
logics. For that matter, in popular ontology languages, finite
expressive logic such as description logic is most used.

3.1.2. Ontology Languages
There are wide varieties of languages for explicit
specification of concepts and relations for context
information. The graphical notations include UML and RDF
while the (description) logic-based notations include
DAML+OIL, OWL etc. The actual instantiated-from-
concepts context data is specified using notations such as
RDF. Typical features of such instances can be found in [2].
OWL Language is an extension of RDF; hence it is possible
to associate an instance pool with an OWL ontology. All
information is organized in so-called OI-models(ontology-
instance models), containing ontology entities (concepts and
properties) and their instances. This allows grouping of

concepts with their instances into self-contained units. Such
a grouping is also referred to as Knowledge Base.

3.2. Ontology-based Interpretation

While the context information can be stored and represented
using ontologies, the “intelligence” is implemented by
context interpretation engine, which reasons over the context
information. Classically, ontology based methodologies
have been well explored for performing interpretation in
systems predominantly at application level. But the
approach could be extended further to cover all other
entities in a cognitive network by integrating information
about radio resources, protocols and user actions. Suitable
mechanisms for context interpretation are required here to
process the raw context data to bring out meaningful higher
level abstractions. These mechanisms are generally provided
in form of various ontology rules.
 Ontology rules provide a way to define behaviour in
relation to a system model. There are generally two types of
rules[8]. Correlation rules correlate various context event
data mainly to enrich the meaning of events, and to reduce
the number of events. Action rules enable taking action over
these enriched context events via various system policies.
 One can see that the context interpretation function is
limited to using correlation rules in the above context.
Popular schemes for specifying correlation rules include
RuleML, and recently, SWRL. SWRL is an extension of
OWL DL. Hence specifying rules in conjunction with
ontological terms and data becomes an easier task. SWRL
extends the expressivity of OWL at the expense of the
decidability of query answering operations. In order to cope
with this problem, several decidable subsets of SWRL have
been identified and investigated, including DL-safe rules.

4. SYSTEM ARCHITECTURE

The detailed architecture for implementing context
interpretation function into cognitive radios and networks is
described in the following sections. The blocks in grey relate
to context provisioning issue, and are discussed briefly only
to provide completeness to the interpretation architecture.

4.1. Syntax Conversion

Context data is generated mainly by sensors(exception:
profile data), and they are not in general owned by the
network owner/service provider. Since they are pervasive
and hence vast in numbers, there is a high chance that their
outputs are in different formats. Thus, for transportation
purposes, a wrapper mechanism is required for context data
to arrive at the interpretation point in single format. XDI is a
promising technology in that aspect[9].

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 Because we used ontologies to represent context
information, we chose RDF as the suitable candidate for

storing context data. Hence it makes sense to convert the
data into RDF format at early stage itself.

Figure 1: Architecture for Context Interpretation

4.2 Context Abstraction

Analyzing context data is difficult if the data is not
normalized into a common, complete, and consistent model.
Preparing context data for analysis entails not only
reformatting the data for better processing and readability,
but also moulding it into its most cohesive pieces. Further, it
includes filtering out unwanted information to reduce
analytical errors or misrepresentations. The capabilities
employed for this purpose are discussed as follows.

4.2.1 Initial Preprocessing
The main function here is data reformatting. The requested
data may be retrieved from several context sources. Each of
these context sources may use different interfaces, protocols
and data formats to exchange information. Hence this
information is aggregated into one common data model,
before further usage. For example, in a usecase, we
implemented a method to change data timestamp format.
To aggregate into one common format, mappings need to be
defined between the data formats used by each of the context
sources and the common data format. Content MathML is
one of the languages fitting this requirement.

4.2.2 Data Approximation
Sometimes incompleteness of some data can be worked out
by approximating, rather than re-asking for its more precise
sensing. This can include, for example, resampling,
interpolation/extrapolation, statistical parameter estimation

etc. Generally, a user-provided library of methods is used,
For example, remaining battery life is generally an
approximation.

4.2.3 Data Fusion
Data fusion is the combining of context data from multiple
disparate sources such that the resulting information is in
some sense better than would be possible when these
sources were used individually. The term better is obviously
desirable, and can mean more accurate, more reliable, more
meaningful, more complete, or refer to the result of an
emerging view of same data object, e.g. stereoscopic vision.
 At times, user’s behavior pattern also needs to be
recognized for prediction and usage. Feature extraction from
a window of data, for this purpose, logically becomes part of
data fusion.
 The data sources may be similar, such as antennas, or
dissimilar, such as electro-optic or acoustic sensor. A key
issue is to deal with conflicting data, producing interim
results that can be revised as more data becomes available.

4.3 Data Validation

Context data, before being stored for usage, needs to be
filtered. Filtering generally involves eliminating incorrect,
invalid or unknown data. For example, reasoning could
determine that two context sensors have provided really
different location information, which is an inconsistency. At

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

���������	
������������	
				������
������	
						��������
�����	
��������������	
								�����
������	
										���
��
�����	
�������
������� �	
								� ����
������	
				� �����
������	
� ���������	

times, given ontological restrictions, there may outliers of
the raw context data, which need to be removed.
 Further, this module must be used to check the
consistency/integrity of the knowledge base, at the juncture
when another piece of information is about to be added. This
requires entailment reasoning, and hence an ontology
reasoner’s support is required for data validation.

4.4 Knowledge Database

A knowledge base is a special kind of database for
knowledge management. It provides the means for the
mechanized, computer-readable collection, organization,
and retrieval of knowledge in form of (context) data. Due to
machine-readability, automated deductive reasoning can be
applied to them. The bases contain a set of data, often in the
form of facts that describe the knowledge in a logically
consistent manner. An OWL ontology directly maps to a DL
Knowledge Base K = �T, A�, where T is set of TBox and A
is set of ABox axioms[7]. Our work required this kind of
knowledge base to be used, based on description logic.
 Physically, the knowledge base stores the context data
in RDF syntax in the form of C(x) or R(x,y). A snapshot of
OI model in OWL, from knowledge base is in the figure
below. For example, it tells that there is an employee
instance, ‘Ryan’, who is linked to a BatOpTerminal(battery-
operated terminal) instance ‘Laptop’ via hasTerminal
property.

Figure 2: Snapshot of Knowledge Base

4.4.1 Other Components
Classically, a knowledge base only consists of Abox and
Tbox rules. However, storage is also needed for various
rules as well as abstraction methods/formulas. In certain
implementations, storage for these can be clubbed with
ontological data storage.

4.5 Context Data Reasoning

As we saw earlier, data validation requires the service of an
ontology Reasoner. Checking integrity of data in a
knowledge base, detection of redundancies, and property
refinement are some of the used functions of a DL reasoner.

4.6 Rule-based Reasoning

In OWL, it is not straightforward to join two property
instances in a <subject predicate object> form. For example,
it is not possible to deduce, “I am in a room with no
coverage”. Similarly, it is not possible to make temporal
statements in OWL, something which is a must for dynamic
domain such as wireless networks. A lot many times,
reasoning over context history is needed to detect an event.
 Also, in OWL it is difficult to reason on a subset of a
given ontology, since the OWL reasoner takes all available
knowledge as input and there is no standard way of only
providing a part of this knowledge based on certain criteria.
To improve performance, decreasing the amount of
information that is used to perform the reasoning is needed.
 One of the better options to handle these problems is to
use more expressive languages than OWL. SWRL,
introduced before, is an example, which allows to reason on
composite relations using rules. Data reasoning rules run on
basis of symbolic fusion in order to generate higher-order,
implicit context. The correlation rules could either be
stateless rules, considering events in isolation, or be state-
based rules, analyzing events gathered over time. The new
generated data needs to be stored back into knowledge base
to support querying.
 For example, in a particular case, the only available
information on the location of a user could be that he is in a
specific meeting. However, this might not be the required
information since the requestor expected geographical
location information with a specific quality of context.
Based on other information available – like the building the
meeting is taken place, other attendees that might be present,
etc. – this information could still be derived. An example
rule from one of our usecases is as follows. It says that if an
employee has a terminal that has a battery which will last till
time x, and the employee is found to be traveling via a travel
booking from his daily work plan, and if time x is found to
be less than the end time of employee’s travel, then the
battery needs charging(new information).

Figure 3: Example SWRL Rule
 The rule-based reasoning may require to be done
iteratively till some point, because the new information may
further correlate with other present information.

4.6.1 Data Completeness Management
For state-based correlation, one needs to wait for data to
arrive before a set of rules can be applied. This can be
achieved by implementing various FSMs. One cannot

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

assume that all sensors always active. Hence at times, when
a decision needs to be taken without waiting long, this
function can trigger a data fetch as well.

4.6.2 Data Fetch Management
This function manages local loops of various fetch requests
placed by various modules.

4.6.3 Profile Data and Rule Reasoning
User preferences, generally captured using various profiles,
can influence interpretation. For example, a reduction in
user memory partition can lead to blockage of a software
download. Thus, sensed data, and shared profile data are
both considered during reasoning.
 It is expected that profile data is in a different format,
and hence it needs to be translated before used.

4.7 Event Triggering

To implement a push, the output of context interpretation
function is fed into various other stages of the cognitive
cycle. The output can be transferred to corresponding
modules using events representing an implicit context.
 A way to fetch such events includes the decision
module etc. registering themselves with the context broker
module, to be notified of particular events. In turn, the
broker needs to monitor any context information that might
be relevant for each of the modules that have registered. As
soon as a particular type of context information changes, this
is noticed by the context mediator, which notifies the
applications that have registered for this event.

4.8 Information Querying

To implement a pull, i.e. the other way to know that a
situation has occurred, is by querying the knowledge base.
In this process, the modules retrieve current data from the
base, and at times, further use the rule reasoner to fuse and
to figure out whether a situation has arisen.
 Multiple queries may happen concurrently in practice.
Hence a query management module is required. In case
queried information is unavailable, this module also needs to
commission data sources. Reasoning capabilities might be
useful to a certain extent to classify context sources and
sinks that receive and provide particular context
information, and thus to help in matching.

5. SYSTEM IMPLEMENTATION

An initial proof-of-concept system has been implemented
and tested using use-cases that illustrated feasibility of such
an architecture. The system was implemented as a tool-chain
using tools from semantic web technology area. OWL was
chosen as the ontology language, RDF as the context data

language, while SWRL was chosen as the rule language.
Being extension of OWL, it is easy to store SWRL rules
with OWL, RDF information. The popular query language
to RDF database is SPARQL, and we chose this language
for our use.
 Protégé-OWL plugin was used as the basic framework,
because it solved most of the integration problems.
1. Protégé is based on Java, as well as most other tools.
2. Protégé supports exactly the same fragment required for

our work – OWL-DL.
3. Protégé has a built-in knowledge base container.
4. Protégé allows editing and storage of SWRL rules in the

knowledge base.
5. Protégé supports rule engine integration, especially with

JESS.
6. Protégé also attaches to various OWL reasoners easily,

such as Pellet or RacerPro.
 We chose Pellet as ontology reasoner for ease of
integration as well as license issues. Similarly, JESS was
chosen as the rule reasoner. To support SPARQL query, we
used JENA framework. The entire integration work was
carried out in Java language.
 Work is in progress to design and integrate generic
modules for various context abstraction functions such as
data fusion. It is envisaged that a lot of formula-based
processing will be involved. Possibilities of integrating a
lightweight Content MathML interpreter are being explored.
By generally extending definition of a knowledge base, and
by using annotations, one can incorporate logical
responsibility for being able to store MathML formulas in
the database. Alternatively, especially for approximation,
use of built-ins of SWRL is also being considered.

6. OBSERVATIONS

The prototype was tested by us for some usecases for
functional as well as performance studies. The first
performance bottleneck was found in full validation of
knowledge base, when some new information was added.
We changed a runtime parameter of Pellet to make it do
quick, incremental reasoning. We experimented with
iterations over rule-based reasoning, but could not gain
clarity over when to stop.
 As the size and complexity of ontology model using
OWL DL increased, we found it very time-consuming to fix
semantic defects, even after enough experience with the
language. We found the debugging support in Protégé is not
strong. Especially in scenarios, where the ontology may get
updated after learning, it makes sense to experiment with
ontology repair systems.
 For validation, we had tried using DIG socket-based
tunneling mechanism. However, as many people have faced,
we too faced problems in working with some OWL
constructs via DIG version 1.0, which is current but

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

incomplete. Hence we switched over to direct, API-based
integration. The time-performance for our medium-sized
ontologies drastically increased. The Protégé-JESS bridge
exports only those facts that are relevant to the set of rules
being executed, and hence time-performance was
satisfactory. Overall, the time taken at various steps for a
database of 23 concepts, 39 properties and 149
concept/property instances was found to be of order of 100
ms on a Pentium-IV processor-based desktop.

7. DEPLOYMENT STRATEGIES

For cognitive networks, the context server approach to
architecture deployment[2] seems to us the most suitable.
This approach permits multiple client access to remote data
sources. The server deals with both the context provisioning
as well as the interpretation aspects. For provisioning, an
access managing and a gathering component are envisioned.
Since end cognitive devices such as mobile handsets have
resource limitations in computation power, disk space etc.,
this approach relieves such clients of resource intensive
operations, which are performed on the server. Doing it
centrally also increases re-usability of cached results by
multiple clients, and hence increases net network
performance. On the flip side, appropriate protocols and
QoS issues for client-server architecture need to be worked
out. Since historical context data is also required by various
clients, and that the maintenance of context history is mainly
a memory concern, the server approach fits well in this
requirement as well. Most of the context management
frameworks surveyed exhibit strict division of the context
data acquisition and use. Thus context sources become
reusable and are able to serve a multitude of context clients.
 To avoid different applications trying to contact the
server for recent information, local caching of results is
suggested. This caching may be distributed e.g. over
multiple base stations in order to minimize retrieval time.
Further, an extension in form of distributed, layered
approach is also possible. It is expected that not all
interpretation sub-functions will be required in various
deployment scenarios. Certain required context abstraction
functions, which do not require major resources, can be part
of a lower layer doing part of interpretation locally, before
handing over control flow to upper layer in the server.
Certain interpreted information such as spectrum availability
may be broadcast using E2R concepts such as cognitive pilot
channel and resource awareness channels[10].

8. OPEN ISSUES

One of the open issues is the footprint requirement of such
an architecture. In E2R, it is being debated whether the
interpretation function will be pushed into a cognitive

device. In such a case, number of tools need to be cut down.
Evolution of Pellet holds much promise, because it specifies
support for better querying and rule execution integration in
future.
 Another problem in the presented approach is the
variety of used context encodings found in practice. Every
system and framework uses its own format to describe
context and its own communications mechanisms.
Standardization of formats such as XDI/XRI and protocols
holds key to resolving this issue.
 The interpretation function for cognitive networks,
that’s driven by OOLPDA model, can’t be complete without
a learning element. Machine learning at top of Bayesian
Networks’ based inference can be explored in this aspect.

9. CONCLUSION

We have described and validated an architecture for context
interpretation that is based on ontologies. The usage of rules,
facts etc has been demonstrated within the prototype for this
architecture. Further evolution of architecture in terms of
design and performance is expected, as more and more open
issues get addressed.

10. REFERENCES

[1] Thomas, R.W. DaSilva, L.A. MacKenzie, A.B., “Cognitive

Networks”, First IEEE International Symposium on New
Frontiers in Dynamic Spectrum Access Networks, pp. 363-
360, November 2005.

[2] M. Baldauf et al, “A survey on Context-aware Systems”,
International Journal on Ad-hoc and Ubiquitous Computing,
Vol.2, No. 4, 2007(forthcoming).

[3] Alex Galis et al, “Contextualisation of Management Overlays
in Ambient Networks”, International Multi-Conference on
Computing in the Global Information Technology, 2006

[4] G. Dimitrakopoulos et al, “Adaptive Resource Management
Platform for Reconfigurable Networks”, ACM Journal of
Mobile Networks and Applications, Vol. 11, No. 6, pp 799-
811, 2006.

[5] T. Strang and C. Linnhoff-Popien, “A Context Modeling
Survey”, Sixth International Workshop on Advanced Context
Modelling, Reasoning and Management, September 2004.

[6] M. Laukkanen, “Semantic Web Technologies in Context-
aware Systems”, Seminar Report, University of Helsinki,
March 2004

[7] E. Franconi, Lecture Notes on Description Logic,
http://www.inf.unibz.it/~franconi/dl/course

[8] Henry Chang et al, “Complex Event Processing using Simple
Rule-based Event Correlation Engines for Business
Performance Management”, The 8th IEEE International
Conference on E-Commerce Technology, 2006.

[9] Giovanni Bartolomeo et al, “Design and XDI/XRI based
implementation of a profile management architecture for next
generation networks”, 16th IST Summit, July 2007.

[10] Oliver Holland et al, “Stepping Stones to the Realization of
Cognitive Radio”, 13th International Conference on
Telecommunications, May 2006.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

