

ARCHITECTING SOFTWARE RADIO

Ari Ahtiainen (Nokia Research Center, Helsinki, Finland; ari.p.ahtiainen@nokia.com);

Heikki Berg (Nokia Research Center, Helsinki, Finland; heikki.berg@nokia.com); Ulf

Lücking (Nokia Research Center, Helsinki, Finland; ulf.lucking@nokia.com); Aarno

Pärssinen (Nokia Research Center, Helsinki, Finland; aarno.parssinen@nokia.com); Jan

Westmeijer (Nokia Research Center, Helsinki, Finland; jan.westmeijer@nokia.com);

ABSTRACT

Applying design principles and methodologies constituted

in the software domain and being adapted to the complete

execution environment provides new perspectives for future

multi-radio computers. The overall system architecture will

allow hardware/software repartitioning and different

hardware variants depending on prior defined requirements

without extensive software rewrites. This demanding target

can be addressed from two directions.

 Firstly, as implementation technology advances it has

to be possible to move services, or functionality, previously

implemented in hardware to software or vice versa.

Secondly, due to cost, power consumption, time-to-market

or other customer needs the architecture has to support the

creation of also hardware variants which still conform to the

prior agreed system specification. This paper will present

the utilized concepts and corresponding benefits to

constitute the proposed architecture and platform for future

radio computers.

1. INTRODUCTION

As compared to conventional software design methods,

which have concentrated on documentation of system

structures and HW/SW partitioning, the proposed formal

design method created by Nokia systematically combines

the methodologies of object-orientation and functional

decomposition to model reactive systems. Key concepts

comprise also the service specification model and system

distribution. Active objects interact with their environment

by means of abstract service primitives, which are visible at

the Provided Service Access Point (PSAP), whereas the

correct ordering of messages is specified by a PSAP state

automaton. Utilizing PSAP state automata allows the SDR

system architecture to contain the system structure and at

the same time its behavior by specifying the services

provided by the system components.

The outcome is a functional specification where the

behavioral model supplies accurate rules on how to

correctly use the architecture by defining the order of

function calls and signals together with any constraints on

their parameter values. Designing the architecture itself

captures only externally observable behavior of the service

– it neither represents any reference implementation nor

dictates any implementation method for the realization of

the service, but by including the state automata of the

services it is possible to create executable models already at

the architecture design phase.

 Another key aspect in architecting of radio computer

device is to specify the generic behavior which every radio

access system in the SDR device must fulfill in order to

become subject of software based control. Such software

control mechanisms include, but are not limited to,

network/device discovery, radio reconfiguration, flow

control and scheduling of multiple simultaneously active

radios. In our approach we don’t require, but do allow also

such option as joint radio resource management. Therefore

any radio computer fulfilling these architectural

requirements can be seen as an autonomous device

participating communications in multiple networks

simultaneously.

2. THE LYRA DESIGN METHODOLOGY

As compared to conventional software design methods,

which have concentrated on documentation of system

structures and HW/SW partitioning, the Lyra design method

[1] created by Nokia utilizes the full power of modeling

with scientific foundation. It should be emphasized that

applying the formal design methods of Lyra to a system like

a radio computer is the cutting-edge approach for future

designs.

 Lyra systematically combines the methodologies of

object-orientation and functional decomposition approaches

to model reactive systems. One key concept is the service

specification model comprising of active objects which

interact with their environment by means of abstract service

primitives. The primitives are visible at the Provided

Service Access Point (PSAP), whereas the correct ordering

of messages is specified by a PSAP state automaton.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 Utilizing PSAP state automata allows our SDR system

architecture to contain the system structure and at the same

time its behavior by specifying the services provided by the

SDR system components.

 The outcome is a functional specification, where the

interface behavior model supplies accurate rules on how to

correctly use the interface by defining the order of function

calls and signals together with any constraints on their

parameter values. Starting point for specifying the system is

a domain model, capturing the relationships between

services of service components and their external users. A

detail of the domain model with its logical interfaces for our

SDR Radio Access Stack (RAS) is shown in Figure 1. The

purpose of a domain model is to identify the the logical

interfaces, which become PSAPs. A domain model

represents the services provided by the system component

together with all different types of external users. Domain

model is an informal description used for drafting. When

using UML domain model is presented with a use case

diagram.

 Based on the information presented in the domain

model, active classes for users and service components can

be defined. Each logical interface, respectively a PSAP, is

now represented as a port, enabling the communication

between entities. Corresponding diagrams for the

communication context of the RAS are shown in Figure 2.

The active classes for service users have Used Service

Access Points (USAPs), which represent the points of

communication between the users and the service

components.

 After this the design continues by specifying the

behavior related to communication between each service

component and its users. This behavior is represented as

PSAP state automaton, which establishes a well-defined

communication protocol between the users and services.

 Finally all service components are collected into

System Functional Specification model, which serves as

highest level of system architecture. Functional

Specification model for the RAS system is shown in Figure

3. Thanks to the state automata used to specify the behavior

of service components the architecture model is fully

executable already at this stage.

 Designing the architecture itself captures only

externally observable behavior of the service – it neither

RadioAccessStack Domain model <<SystemFunctionalArchitecture>>package SystemFunctionalArchitecture {5/11}

aRadioAccessStack : RadioAccessStack aRadioAccessStack : RadioAccessStack

aUser : ExtFlowController

aUser : ExtFlowController

aUser1 : ExtRadioConnectionManager

aUser1 : ExtRadioConnectionManager

aUser2 : ExtMultiRadioController

aUser2 : ExtMultiRadioController

aUser3 : ExtAir

aUser3 : ExtAir

::RAS_RadioSystemControl::
ServiceOverview::

RAS_RadioSystemControl

<<ServiceComponent>>

::RAS_RadioSystemControl::
ServiceOverview::

RAS_RadioSystemControl

<<ServiceComponent>>

::RAS_Scanning::
ServiceOverview::

RAS_Scanning

<<ServiceComponent>>

::RAS_Scanning::
ServiceOverview::

RAS_Scanning

<<ServiceComponent>>

::RAS_AssociationControl::
ServiceOverview::

RAS_AssociationControl

<<ServiceComponent>>

::RAS_AssociationControl::
ServiceOverview::

RAS_AssociationControl

<<ServiceComponent>>

::RAS_DataAccess::
ServiceOverview::
RAS_DataAccess

<<ServiceComponent>>

::RAS_DataAccess::
ServiceOverview::
RAS_DataAccess

<<ServiceComponent>>

::RAS_Info::ServiceOverview::
RAS_Info

<<ServiceComponent>>

::RAS_Info::ServiceOverview::
RAS_Info

<<ServiceComponent>>

::RAS_Synchronization::
ServiceOverview::

RAS_Synchronization

<<ServiceComponent>>

::RAS_Synchronization::
ServiceOverview::

RAS_Synchronization

<<ServiceComponent>>

Figure 1 Radio Access Stack - Domain Model

RadioAccessStack Communication context<<SystemFunctionalArchitecture>>package
SystemFunctionalArchitecture

{2/11}

<<SystemComponent>>

RadioAccessStack

<<SystemComponent>>

RadioAccessStack

FlowController_SAPFlowController_SAP

I_FlowController_to_RadioAccessStackI_FlowController_to_RadioAccessStack

I_FlowController_from_RadioAccessStackI_FlowController_from_RadioAccessStack

Air_SAPAir_SAP

I_Air_to_RadioAccessStackI_Air_to_RadioAccessStack I_Air_from_RadioAccessStackI_Air_from_RadioAccessStack

RadioConnectionManager_SAPRadioConnectionManager_SAP

I_RadioConnectionManager_to_RadioAccessStackI_RadioConnectionManager_to_RadioAccessStack

I_RadioConnectionManager_from_RadioAccessStackI_RadioConnectionManager_from_RadioAccessStack

MultiRadioController_SAPMultiRadioController_SAP

I_MultiRadioController_to_RadioAccessStackI_MultiRadioController_to_RadioAccessStack

I_MultiRadioController_from_RadioAccessStackI_MultiRadioController_from_RadioAccessStack

::RadioAccessStack::ExternalEntities::
ExtFlowController

::RadioAccessStack::ExternalEntities::
ExtFlowController

USAPUSAP
I_FlowController_from_RadioAccessStackI_FlowController_from_RadioAccessStack

I_FlowController_to_RadioAccessStackI_FlowController_to_RadioAccessStack

::RadioAccessStack::ExternalEntities::ExtAir

::RadioAccessStack::ExternalEntities::ExtAir

USAPUSAP

I_Air_from_RadioAccessStackI_Air_from_RadioAccessStackI_Air_to_RadioAccessStackI_Air_to_RadioAccessStack

::RadioAccessStack::ExternalEntities::
ExtRadioConnectionManager

::RadioAccessStack::ExternalEntities::
ExtRadioConnectionManager

USAPUSAP
I_RadioConnectionManager_from_RadioAccessStackI_RadioConnectionManager_from_RadioAccessStack

I_RadioConnectionManager_to_RadioAccessStackI_RadioConnectionManager_to_RadioAccessStack

::RadioAccessStack::ExternalEntities::
ExtMultiRadioController

::RadioAccessStack::ExternalEntities::
ExtMultiRadioController

USAPUSAP
I_MultiRadioController_from_RadioAccessStackI_MultiRadioController_from_RadioAccessStack

I_MultiRadioController_to_RadioAccessStackI_MultiRadioController_to_RadioAccessStack

Figure 2 Radio Access Stack - Communication

Context

System Functional Architecture active <<SystemComponent>>class RadioAccessStack {2/2}System Functional Architecture active <<SystemComponent>>class RadioAccessStack {2/2}
FlowController_SAPFlowController_SAP

I_FlowController_to_RadioAccessStackI_FlowController_to_RadioAccessStackI_FlowController_from_RadioAccessStackI_FlowController_from_RadioAccessStack

Air_SAPAir_SAP

I_Air_to_RadioAccessStackI_Air_to_RadioAccessStack I_Air_from_RadioAccessStackI_Air_from_RadioAccessStack

RadioConnectionManager_SAPRadioConnectionManager_SAP

I_RadioConnectionManager_to_RadioAccessStackI_RadioConnectionManager_to_RadioAccessStack

I_RadioConnectionManager_from_RadioAccessStackI_RadioConnectionManager_from_RadioAccessStack

MultiRadioController_SAPMultiRadioController_SAP

I_MultiRadioController_to_RadioAccessStackI_MultiRadioController_to_RadioAccessStack

I_MultiRadioController_from_RadioAccessStackI_MultiRadioController_from_RadioAccessStack

<<ServiceComponent>>

aRAS_RadioSystemControl :
RAS_RadioSystemControl[*]/0

<<ServiceComponent>>

aRAS_RadioSystemControl :
RAS_RadioSystemControl[*]/0

PSAPPSAP

Factory_IAPFactory_IAP

SCAN_USAP_IAPSCAN_USAP_IAP

ASSOC_USAP_IAPASSOC_USAP_IAP

DATA_USAP_IAPDATA_USAP_IAP

INFO_USAP_IAPINFO_USAP_IAP

SYNC_USAP_IAPSYNC_USAP_IAP

<<ServiceComponent>>

aRAS_Scanning : RAS_Scanning[*]/0

<<ServiceComponent>>

aRAS_Scanning : RAS_Scanning[*]/0PSAPPSAP

RSC_PSAP_IAPRSC_PSAP_IAP

<<ServiceComponent>>

aRAS_AssociationControl :
RAS_AssociationControl[*]/0

<<ServiceComponent>>

aRAS_AssociationControl :
RAS_AssociationControl[*]/0

PSAPPSAP

RSC_PSAP_IAPRSC_PSAP_IAP

DATA_USAP_IAPDATA_USAP_IAP

<<ServiceComponent>>

aRAS_DataAccess :
RAS_DataAccess[*]/0

<<ServiceComponent>>

aRAS_DataAccess :
RAS_DataAccess[*]/0

PSAPPSAP

RSC_PSAP_IAPRSC_PSAP_IAPASSOC_PSAP_IAPASSOC_PSAP_IAP

<<ServiceComponent>>

aRAS_Info : RAS_Info[*]/0

<<ServiceComponent>>

aRAS_Info : RAS_Info[*]/0PSAPPSAP

RSC_PSAP_IAPRSC_PSAP_IAP

<<ServiceComponent>>

aRAS_Synchronization :
RAS_Synchronization[*]/0

<<ServiceComponent>>

aRAS_Synchronization :
RAS_Synchronization[*]/0

PSAPPSAP

RSC_PSAP_IAPRSC_PSAP_IAP

<<ServiceComponentFactory>>

theRadioFactory : RadioFactory

<<ServiceComponentFactory>>

theRadioFactory : RadioFactory

RadioSystemControl_PSAPRadioSystemControl_PSAP

RadioSystemControl_USAPRadioSystemControl_USAP

RadioSystemControl_IAPRadioSystemControl_IAP

Scanning_PSAPScanning_PSAP

Scanning_USAPScanning_USAP
AssociationControl_PSAPAssociationControl_PSAP

AssociationControl_USAPAssociationControl_USAP
DataAccess_PSAPDataAccess_PSAP

DataAccess_USAPDataAccess_USAP

Info_PSAPInfo_PSAP
Info_USAPInfo_USAP

Synchronization_PSAPSynchronization_PSAP Synchronization_USAPSynchronization_USAP

Figure 3 Radio Access Stack - System Architecture

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

represents any reference implementation nor dictates any

implementation method for the realization of the service,

but by including the state automata of the services it is

possible to create executable models already at the

architecture design phase. The ability to execute the model

contributes to the many benefits of architecture modeling:

• Communication of the design by visualization

• Analysis and exploration of architectural design

options and performance aspects

• Code generation by model compilers

• Verification by using model-checking and theorem

proving methods

• Model-based testing allowing on-the-fly

verification and validation of implementations

 These benefits can only be realized by using a well-

defined meta-modeling framework to support the selected

modeling language. In case of UML2 such framework is

ensured by the UML2 language model (i.e. a meta-model)

and its implementation as a uniform model repository.

Models created by an architect are stored into such

repository in their UML language structure format, which

makes it possible to traverse models for the above listed

transformation purposes.

3. UNIFIED MODEL FOR RADIO SYSTEMS

For transparently attaching our SDR architecture (Figure 4)

to higher layer networking protocols, it is necessary to

generalize the behavior of the underlying radio system and

specific states.

 According to such unified radio system model each

radio system has to provide three sets of services.

• User data services

• Radio configuration services

• Multi-radio scheduling services

 User data services include both control services for

managing user traffic flows, as well as the actual radio data

transfer (uni- or bi-directional). These services are visible at

the Multi-radio Access API, where data coming/going to the

network layer is defined as a flow. The Flow Controller

component then routes data of this flow from/to a radio

connection that has been selected by the Radio Connection

Manager.

 The Multi-Radio Access API is able to multiplex

several flows to use a single radio connection. Several

different networking entities can also use same radio

connection. One access system can also provide more than

one radio connection. Note, that in physical layer these

multiple radio connections might share the same physical

radio resources. In order to support media independent

handovers the Radio Connection Manager is capable to

move any flow from one radio connection to another.

Configuration services are used to set up and reconfigure

the set of active radios by managing the involved

components. Services for multi-radio scheduling guarantees

that the various radio systems follow the rule sets to avoid

radio interference in the time domain, when simultaneously

active. Each radio system has its local timing scheme, which

has to be mapped onto a unified time basis. Scheduling is

then expressed by using this unified time.

4. LAYERING AND ABSTRACTING EXECUTION

ENVIRONMENT SERVICES

Software portability from one SDR platform to another is an

important aspect which is not yet completely solved. As the

development of Real Time Operating Systems (RTOS) and

Remote Procedure Call (RPC) mechanisms for distributed

embedded devices is still strong, the industry can not fix to

only certain RTOS interface, such as POSIX, or to specific

RPC mechanism, such as CORBA. Naturally in some

domains, such as military SDR, interface compliance is

necessary in order to achieve customer requirements.

However, portability can be achieved also using well known

design patterns, instead of fixing to a single implementation.

In the following paragraph some of the main design

patterns, to be utilized in our SDR platform are highlighted.

 A good design pattern for hiding the creation of basic

RTOS services is AbstractFactory [2] (see Figure 5). The

concrete factory of course, has to be implemented for each

RTOS separately and requires some manual work, but the

main goal of RTOS portability is achieved.

Figure 4 Overall SDR Architecture

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 As the SDR radio platform becomes more and more

distributed, where different parts of the radio protocol

implementation have their dedicated control processors, a

lightweight system wide RPC and Inter Process

Communication (IPC) mechanism is needed. For serving

this purpose there are multiple commercial and open

alternatives such as DDS [3], CORBA/e [4], LINX from

ENEA [5] or TIPC [6] as well as many other designs

available. Ideally you would like to compare different

alternatives and plug-in suitable RPC mechanism depending

on your platform.

 Fortunately RPC mechanisms can be hidden behind a

local proxy quite easily. The basic design pattern is depicted

in Figure 6 and Figure 7.

 Here the client uses the interface of Subject for issuing

the request() from LocalRpcProxy instead of issuing the

request directly using RPC mechanism. Proxies allow to

write portable applications, by providing the possibility to

select between multiple RPC mechanisms, even in runtime,

by using the factory method-pattern.

 The most critical part of software portability is

probably to implement the physical layer signal processing

across different platforms. Numerically intensive algorithms

are still implemented using dedicated ASICs or software

programmable signal processors with specialized instruction

sets. From a SW programmer perspective they are treated as

devices which of course require specific drivers. In order to

achieve portability these physical devices need to be

available in the alternative platform.

 It can be assumed that this kind of algorithm

acceleration (or parallelization) cannot be avoided due to

the demanding timing restrictions specified in the upcoming

radio standards. This trend shall continue also in the future

at least in small size, power sensitive portable devices.

Simultaneous usage of these accelerators needs to be

optimized by a scheduler to effectively execute required

computational tasks. In order to strive for application SW

portability the interfaces towards these dedicated

accelerators need to be well designed and maintained.

Generalizing the interfaces towards these accelerators in

order to satisfy the requirements of multiple radio standards

is therefore a major task and needs a stable programming

model over several HW generations. This is mandatory to

achieve SW radio also in the physical layer. As an example

the involved layers of RF control software is shortly

described in the next paragraph.

 The control software, attached to generic hardware

drivers is based on the time concept for multi-radio and will

implement amongst other state functionality, the scheduler,

resource manager and calibration manager. The basic

concept of the “self-contained” RF control software

architecture is presented in Figure 8.

Figure 5 Abstract Factory Pattern

Figure 6 Proxy Pattern for hiding RPC Mechanism

Figure 8 RF Control Software

Figure 7 RPC Proxy Objects

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5. MAPPING TO PLATFORM SPECIFIC

IMPLEMENTATION

The executable specification describes the complete set of

reconfiguration services and signaling, as well as the

generalized interfaces for radio access. It also provides the

means to observe the local conditions of the device and

enabling the system to reason about its own structural and

behavioral features. To support also future cognitive radios,

mechanisms for decision making and policy enforcement

have to be considered to enable autonomous adaptation and

cross layer optimization bound to the environmental

context. Reliability will be increased by fault and recovery

management which will take care of falling back to the last

known state to keep the device operational. The executable

specification should also model the design patterns needed

for mapping the services to different platforms.

 An implementation of such framework will incorporate

a combination of the event-driven and publisher/subscriber

principles to launch distributed tasks on demand. It abstracts

different transport mechanisms for inter-processor and inter-

process communications in a heterogeneous multiprocessor

environment. Depending on the platform environment, in

this context Symmetric Multi-Processing (SMP) or

Asymmetric Multi-processing (AMP), the framework on top

shall be configured at compile time to use the most suitable

IPC mechanism. The dedicated reconfiguration mechanisms

of the signal path need to address the different kinds of

device types, as there are general purpose processors

including multi-core processors, specialized processors (like

vector processors) and configurable hardware accelerators

(including customized digital logic for high speed signal

processing and RF IP blocks up to antenna).

6. CONCLUSION

The presented structured and modular architectural concepts

for a radio computer is a direct response to the evolution of

communication standards, software development, computer

architecture, circuit design and the advances in

semiconductor technology.

 Mastering the complexity can be only achieved by

appropriately raising the level of abstraction and using

formal methodologies for specifying hardware and software

components. In that sense a holistic view on radio modem

architecture and platform is promoted, taking into account

every aspect to successfully fulfill the requirements of

future standards or disruptive technologies like cognitive

radio. Each of the facets of the protocol, baseband and radio

frequency domain requires further studies including

architecture validation and implementation of selected

platform components. Maybe the biggest challenge is to

keep hardware and software development aligned, but still

decoupled as much as possible.

7. REFERENCES

[1] Sari Leppänen, “The Lyra Design Method”, Tampere

University of Technology, Finland, 2005.
[2] E. Gamma, R. Helm, R. Johnson and John Vlissides, Design

Patterns – Elements of Reusable Object Oriented Software,
Addison Wesley, New Jersey, USA, 1995.

[3] OMG Specification, Data Distribution Service for Real-time
Systems, Version 1.2, 2007.

[4] OMG Final Adopted Specification, CORBA for embedded
Specification, 2006.

[5] ENEA, LINX Protocol - Document ver.10 for protocol 1.0,
2006.

[6] Multicore Association, TIPC Working Group, TIPC:
Transparent Inter Process Communication Protocol, 2006.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

ARCHITECTING SOFTWARE RADIO

Ari Ahtiainen (Nokia Research Center, Helsinki, Finland; ari.p.ahtiainen@nokia.com);

Heikki Berg (Nokia Research Center, Helsinki, Finland; heikki.berg@nokia.com); Ulf

Lücking (Nokia Research Center, Helsinki, Finland; ulf.lucking@nokia.com); Aarno

Pärssinen (Nokia Research Center, Helsinki, Finland; aarno.parssinen@nokia.com); Jan

Westmeijer (Nokia Research Center, Helsinki, Finland; jan.westmeijer@nokia.com);

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

