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ABSTRACT  
 
Real time implementation of coding schemes suitable for 
radio application with high throughput requirement in low 
SNR conditions poses a serious challenge to the overall 
radio design. Amongst various channel coding schemes, 
Turbo-Code is the most promising choice in many radio 
systems for high data rate services with superior BER 
performance. However, turbo decoding is highly 
computationally intensive, and its real time implementation 
requires considerable processing power. To address this 
issue, we propose a new Vectorized approach for 
implementing Turbo Product Code (TPC) Decoder on 
PowerPC based COTS hardware used for developing SDR 
based communication systems. In this paper, we have 
discussed the implementation and performance of Scalar as 
well as Vectorized version of TPC decoder based on 
extended block code BCH (16,11,4) on G4 generation of 
PowerPC MPC7447A. Both the versions of TPC decoder 
when compiled using the WindRiver diab Compiler (version 
5.4.0) with the same compiling, linking and optimization 
options, the Vectorized approach offers both significant 
speedup and complexity reduction over the conventional 
Scalar implementation.  
 
 

1. INTRODUCTION 
 
Forward Error Correcting (FEC) block is one of the 
important components of an SDR system. It allows the SDR 
system to preserve spectral efficiency and improve the 
quality of the transmission, which is an important 
requirement in today’s digital world. The demand for 
greater data throughput is increasing for all communication 
systems, and will continue to grow. At the same time, 
tolerance for data errors and data latency is diminishing, and 
that trend will like-wise persist. These demands play 
directly to the strength of robust FEC schemes. Turbo 
Product Codes bring the most value for communication 
systems that have high data rates, require low coding 
overhead, and exhibit the need for the utmost in data 
integrity [1]. 

 Since TPC decoder involves exhaustive mathematical 
operations, many time-consuming functions of this 
algorithm can be optimized if the underlying parallelism is 
investigated and then applying parallel processing to 
speedup the execution [1]. 
 General Purpose Processors (GPPs) are attractive for 
the digital signal processing requirements of software 
defined radio as most of the key communication kernels can 
be executed on these general purpose programmable 
platforms, instead of dedicated hardware. For platforms 
where the power budget allows the use of GPPs, 
development cost and time to market can be significantly 
reduced compared to dedicated DSPs. Major microprocessor 
vendors have announced high performance parallel 
processing extensions to their general purpose processors in 
an effort to concurrently address high bandwidth data-
processing and algorithmically intensive applications [2]. 
This paper jointly discusses the processor architecture and 
characteristics of the decoding algorithm and proposes a 
SIMD-friendly implementation of TPC decoder. Although 
described here in the AltiVec context, this implementation is 
applicable to any SIMD (Single Instruction Multiple Data) 
architecture. 
 The paper is organized as follows. Section 2 is 
dedicated to brief description of Turbo Product Codes and 
the decoding algorithm. Section 3 deals with the real-time 
Scalar PowerPC implementation of the decoder. A brief 
overview of SIMD architecture is portrayed in Section 4. 
The Vectorized implementation of TPC decoder using 
AltiVec technology along with code optimizations is 
described in Section 5. Section 6 presents the promising 
results of throughput improvement of our Vectorized 
approach over conventional Scalar PowerPC 
implementation. Finally, concluding remarks are given in 
Section 7.  
 

2. TURBO PRODUCT CODES 
 
In 1993, Berrou presented turbo code that consists of two 
recursive systematic convolutional codes concatenated in 
parallel. Its outstanding performance is possible due to the 
employment of random interleavers and iterative soft-input 
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soft-output (SISO) decoding algorithms. An alternative to 
convolutional turbo codes is Turbo Product Codes. TPC is 
block product code with turbo decoding algorithm. Pyndiah 
has devised a low-complexity block turbo decoding 
algorithm which has three appealing features for high bit 
rate applications; First, it has inherited from the low 
complexity of algebraic decoders; Second, the turbo process 
converges in only four iterations [3]. Third, TPC has a 
structure not requiring additional interleaving. That’s why 
the product code is a simple and efficient method to 
construct powerful codes using a classic linear block code 
that combines high coding gain and acceptable delay. 
 Let us consider two systematic linear block codes C1 
having parameters (n1, k1, δ1) and C2 having parameters (n2, 
k2, δ2) where ni, ki and δi (i=1, 2) stand for code length, 
number of information symbols and minimum Hamming 
distance respectively. The product code P = C1  C2 is 
obtained by: 
• placing (k1 x k2) information bits in an array of k1 

rows and k2 columns, 
• coding the k1 rows using code C2, 
• coding the n2 columns using code C1. 

The parameters of the resulting product code P is given 
by n=n1xn2, k=k1xk2 and δ=δ1xδ2 and the code rate R by 
R=R1xR2 where Ri is the code rate of code Ci. 

For this implementation, we have used a product code P 
with C1 = C2 = BCH (16, 11, 4) which is an extended BCH 
code. The minimum distance δ is then equal to 16 and the 
code rate 0.473. 
 
2.1. TPC Decoder 
 
The main idea behind iterative decoding is to break up the 
decoding problem into a sequence of stages or iterations, 
such that each stage utilizes the output from the previous 
stages to formulate its own result.  
 Amongst various decoding algorithms, Chase-II 
Algorithm for iterative decoding of TPCs presents a 
possibility for optimal decoding, has lesser computational 
complexity for the same performance and offers ample 
flexibility in terms of performance-complexity tradeoff [4].  
Some key points involved in the decoding algorithm are as 
follows [5]: 
• The component block codes are decoded using soft 

decision decoding, 
• Iterative decoding with the Hamming threshold is 

used, that not only results in a significant coding gain 
but also a faster iterative process [6], 

• Small values (<0.5) are used for constants α (weight 
factor) and β (reliability factor) in the first iteration 
where the BER is high and gradually increased at 
each additional iteration. 

 The decoding procedure has been fully described in    
[7]. Thus, we shall here give only a brief description of the 

algorithm for the sake of clarity. The basic component of 
TPC Decoder is the SISO decoder used for decoding the 
rows and columns of product code. It is a modified Chase 
algorithm which starts by computing the maximum-
likelihood (ML) codeword using the log-likelihood ratio 
(LLR) of the bits at the input of the SISO decoder. For each 
bit of the ML codeword, it then computes the log-likelihood 
ratio which is the soft output of the decoder. The reliability 
of the decision dj is the LLR of transmitted symbol ej which 
is given by the following relation [8]: 
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where Wj is the extrinsic information of the jth bit, ri is the 
received codeword bit, ci

d is the detected codeword bit(ith) 
and ci

c is the concurrent codeword bit(ith). The basic flow of 
the algorithm is illustrated in Fig. 1. [8]. 
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Fig.1. Block diagram of elementary TPC decoder (mth half-
iteration) 
 
• [R] is the received codeword (row/column) 
•     [W(m+1)] is the additional information given by the 

previous decoder concerning the reliability of the 
decoded bit (extrinsic information), 

•     [R(m)] = [R] + α(m).[W(m)], 
•     α(m) and β(m) are weight and reliability constants  

    respectively, which depend on the current half-      
    iteration. 

  
3. SCALER POWERPC IMPLEMENTATION  

 
Conventional PowerPC implementation involves sequential 
processing i.e. computes one value at a time that introduces 
an extra overhead to call a routine number of times to 
perform the same operation on multiple pieces of data.  
 The major building blocks of TPC decoding algorithm 
are Hard Decision Computation, Forming Subset of 
Candidate Codewords, Metric Calculation and Extrinsic 
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Information Calculation [9]. These tasks are considered to 
be performance bottlenecks because of several mathematical 
operations like multiplication, accumulation, logical 
exclusive-OR etc. Their implementation involves excessive 
loops and branching that severely limits the execution speed 
of the decoding algorithm.  
 WindRiver’s Workbench 2.5 IDE is used to edit/debug 
the TPC decoder source code and the object file is 
downloaded on Champ AV-IV board having PowerPC 
MPC7447A. The complete Scalar C code of decoding 
algorithm was compiled using diab compiler version 5.4.0 
(WindRiver) with –XO–Xsize-opt optimization options to 
produce the fastest code possible. The 16Kbytes of object 
file when downloaded on the target platform yields 30 Kbps 
throughput (approx.). This low throughput restricts the 
Scalar implementation of TPC in high data rate applications 
developed over general-purpose platforms.   
 

4. SIMD ARCHITECTURE 
 
The primary requirements of hardware intended for 
Software Defined Radio systems are flexibility and 
programmability. The flexibility of the original SDR 
concept comes at the price of excessive demand for 
computational power and its associated problems. Selecting 
the best choice of processing resources is arguably the most 
critical problem faced in the course of developing any 
software radio or multi-waveform platform. GPPs have been 
a preferable choice for SDR systems due to their large 
amounts of program and user memory, floating-point 
operation and better high-level language development 
environments. 
 Various SIMD extensions to GPP have been classified 
on the basis whether the separate execution unit is employed 
for vector processing or the existing floating point unit is 
used. Some are constrained by backward compatibility and a 
desire to limit silicon investment to a small fraction of the 
processor die area by overloading their floating-point (FP) 
registers to accommodate vector data. These extensions 
eliminate the need to modify the operating system by 
significantly compromising performance. Few extensions 
use new register files exclusively to FP registers to 
accelerate the next level of performance driven, high-
bandwidth communications and computing applications [2].  
 AltiVec Technology added to the industry standard 
PowerPC can be most accurately thought of as a set of 
registers and SIMD execution units [10]. It offers a simple 
software-based high-performance computing model to the 
system engineer. Software based multiprocessing can be 
used to further increase the capabilities of a system, not to 
mention providing the ability to revise and refine algorithms 
in software with no changes required to the underlying 
hardware platform. This new computational engine operates 
concurrently with the existing integer and floating-point 

units, allowing highly parallel operations with simultaneous 
execution of up to 16 arithmetic operations in a single clock 
cycle. One can freely intermix Scalar integer, floating-point 
and vector instructions in the source code without impacting 
a program's performance. Fig. 2 shows the architectural 
view of the AltiVec unit [10]. 
 

 
 

Fig.2. AltiVec architectural diagram with three Vector ALUs and 
one Permute unit 
 

5. VECTORIZED IMPLEMENTATION 
  
In order for the iterative decoding algorithms to be 
practically feasible, the complexity in each stage, in terms of 
number of operations and hardware complexity should be 
comparable to that of the original non-iterative decoding 
algorithms. At the same time, the performance should 
approach the optimum, maximum likelihood decoding 
performance in terms of bit error rate.  
 Turbo Product Code decoding algorithm provides 
ample opportunities for parallel execution and thus 
performance increases. Vectorization performs computation 
on multiple elements at a time, i.e. vector processing 
reduces the fetch and decode bandwidth as the number of 
instructions fetched are less. Since a block of 256 
independent elements is required to be processed with same 
series of operations by the decoder in minimum possible 
time, AltiVec unit meets this requirement. The AltiVec 
version for TPC decoding takes advantage of this data 
parallelism. 
 The manner in which the 128-bit wide AltiVec registers 
are split is important [11]. In TPC decoder, the data is 
represented as 32-bit, hence 4 samples in a vector are 
processed simultaneously. In our parallel approach, each 
row/column of 16 floating point elements is represented by 
four floating-point vectors that are processed using AltiVec 
instruction set in the smallest possible time. However, for a 
16-bit or 8-bit quantized data, more parallelism can be 
obtained. 
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5.1. Programming with AltiVec 
 
Writing AltiVec code for DSP algorithms at assembly 
language level is very time-consuming in general, but C 
Programming Model for AltiVec enables facile use of 
AltiVec within any C, C++ program with less development 
time [11]. We have enabled the implementation using C 
intrinsics that has the following characteristics: 
• Dynamic Flexibility 
• Portability 
• Software Reuse 
• Improved code readability  

 The AltiVec C/C++ programming model provides a 
way to match the parallelism in TPC decoding algorithm to 
the functional units provided by AltiVec technology. 
 
5.2. Code Optimizations 
 
Our goal is to optimize the TPC decoder for computation 
time. It is critical to have all code and critical data segments 
reside on-chip. Since large blocks of data are needed to be 
stored efficiently in the internal memory for every 
subsequent iteration, limited on-chip data memory size of 
64KB imposes a challenging task on the optimization of 
highly complex iterative TPC Decoder. The following code 
optimizations were done during the implementation of 
iterative soft decoding algorithm for product codes. The 
code is optimized with respect to execution time and 
memory usage. 
 
5.2.1. High Throughput Design 
High Throughput Designs focus on moving as much data 
through the calculation as possible in the shortest amount of 
time [12]. By implementing high-throughput functions of 
TPC decoder, we have gracefully eliminated the overheads 
like cost of saving and restoring vector registers, organizing 
data within register, and loading/assembling constants 
associated with AltiVec accelerated functions.  
 
5.2.2. Globals and Constants 
Globals and Constants are cycle and bandwidth wasters. 
This is especially true of globals [12]. When we use a global 
in a tight loop, the compiler can't be sure that some other 
thread isn't changing that global. As a result, the global is 
freshly loaded every time through the loop. To avoid this, a 
stack variable is declared and global is copied into it. Hence 
in our implementation, loading overhead is reduced by 
generating constants and globals on the fly. 
 
5.2.3. Data Organization and Alignment 
 In order to take advantage of high throughput code 
architecture, all data is kept in one place and accessible as 
an array [12]. If one is jumping around in memory, 
especially if one can’t even load data as whole vectors, 

performance will be poor. Since AltiVec Unit does not 
automatically or transparently handles unaligned Loads and 
Stores, this problem is addressed by proper data alignment 
in software although it had substantial effects on the speed. 
 
5.2.4.    Uniform vs. Non-uniform Vectors 
The functions using non-uniform vectors become more 
complicated with a lot of permute operations, data shuffling 
on stack, redundant calculations and lost opportunity for 
parallelism [12]. We have used uniform vectors that are 
typically easier to read and write and they rarely require the 
use of the permute unit at all. 
 
5.2.5.     Eliminate Branching 
We have avoided the use of conditional jumps as it is 
difficult for the processor to predict whether to jump or not. 
Since mispredictions cause undesirable stalling, we have 
attempted the limited use of conditional jumps as much as 
possible in the core of the algorithm [12]. 
 Here are few of the optimized Vectorized routines used 
in TPC decoding algorithm that are frequently called and are 
the performance bottlenecks in conventional Scalar 
PowerPC implementation.  
 
•    Hard Decision 

 
for (i = 0; i<16; i++) { 

           vecHardCode[i][0] = 
vec_abs(vec_cmplt(vecRecUpCode[i][0], zeroF)); 

vecHardCode[i][1]= 
vec_abs(vec_cmplt(vecRecUpCode [i][1], zeroF)); 
 vecHardCode[i][2]= 
vec_abs(vec_cmplt(vecRecUpCode [i][2], zeroF)); 
 vecHardCode[i][3]= 
vec_abs(vec_cmplt(vecRecUpCode[i][3], zeroF)); 
 } 
// When processor encounters a branch instruction and 
conditional data is not available, the processor guesses…If 
guessed wrong, it will back trace the decision point and start 
over. To reduce computational latency, branching (use of if-
then-else) is eliminated by using vec_cmplt () instruction 
[12]. 
 
•    Candidate Codewords Formation 
 
 for (i=0; i<8; i++) { 
 vecTestPattern[i][0]=vec_xor(vecTestPattern[i][0], 
vecHardCode[row][0]); 
 vecTestPattern[i][1]=vec_xor(vecTestPattern[i][1], 
vecHardCode[row][1]); 
 vecTestPattern[i][2]=vec_xor(vecTestPattern[i][2], 
vecHardCode[row][2]); 
 vecTestPattern[i][3]=vec_xor(vecTestPattern[i][3], 
vecHardCode[row][3]); 
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} 
// loop unrolling eliminates data dependency, Single 
vec_xor instruction performs logical exclusive-OR 
operation between two vectors each consisting of four 
floating-point elements.  
    
• Metric Calculation 
 

for (i=0; i<rSet; i++) { 
    Vec1 = vec_madd(vecZdash[i][0], 
vecRecUpCode[row][0], zeroF); 
    Vec2 = vec_madd(vecZdash[i][1], vecRecUpCode 
[row][1], zeroF); 
    Vec3 = vec_madd(vecZdash[i][2], vecRecUpCode 
[row][2], zeroF); 
    Vec4 = vec_madd(vecZdash[i][3], vecRecUpCode 
[row][3], zeroF); 
             } 
// Single vec_madd instruction for multiply-accumulate 
operation, Loop over the length of the vectors, this time 
doing 4 vectors in parallel to stuff the pipeline. We have 
unrolled the loop to allow multiple vec_madd to pipeline 
with one another. This is now possible because the result 
from one vec_madd is not used in the next one.  
 
• Search for Concurrent Codeword 
 
typedef union 
 { 
 vector float vecDetectedCode[4]; 
 float detectedCode[16]; 
 } vec_detectedCode; 
for (j=0; j<16; j++) 
 { 
 temp = 0; 
 for (i=0; i<rSet; i++) 

 { 
if (vDetectedCode.detectedCode[j] != 
vZdash.zDash[i][j])  

{ 
  ii[temp] = i; 
  temp++;  

} 
} 

 } 
// A union allows member wise access to vector float. It 
provides 16 byte alignment to non-vector types independent 
of 8 byte stack frame alignment and prevents unaligned 
access.   
    

6. RESULTS AND DISCUSSIONS 
 
We have simulated the complete Scalar C code of TPC for 
gaussian channel in Microsoft Visual C++6.0 IDE. Fig. 3 
shows the performance characteristics for (16,11,4)2 TPC, 

iteration by iteration, in terms of bit error rate (BER) vs. 
signal to noise ratio (SNR) curves. At BER of 10-5, 6 dB of 
coding gain is achieved after four iterations as compared to 
uncoded system. As can be seen from the figure, there is no 
significant improvement in performance after four 
iterations. 

 
Fig. 3. BER vs. Eb/N0 of product code [BCH (16,11,4)2] on a    
Gaussian Channel 
 
 The Vectorized C code implementation of decoder 
using 32-bit floating point representation (without 
quantization) was compiled using AltiVec enhanced diab 
compiler (WindRiver) version 5.4.0 and –XO–Xsize-opt 
optimization options (same as for Scalar code). The 
resultant object file of size 7Kbytes when downloaded on 
the target platform only takes 0.48ms of execution time 
giving a throughput of 252 kbps, while the Scalar PowerPC 
implementation over the same platform generated 16 Kbytes 
of object file with throughput of 30 Kbps as shown in Fig. 4. 
Hence, we have achieved 8x speedup with considerable 
reduction in object file size as compared to the conventional 
Scalar version. This is one of the fastest implementation of 
TPC on a single GPP described to date. 
 

 
 

Fig. 4.  TPC: Vector vs. Scalar Implementation Results (Both 
Implementations were carried out on MPC7447A@1.0 GHz) 
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 The main reasons for the speedup are as follows: First, 
we have efficiently exploited the inherent data-
independency of TPC to implement a SIMD-friendly 
algorithm. Second, the load/store instructions in the 
iterations are saved as all the variables can be stored in 
AltiVec registers. Thirdly, the AltiVec version does 4 
multiplications and 4 additions in one cycle as opposed to 8 
to do the same in Scalar PowerPC implementation. 
Therefore, the optimized, vector based TPC decoder 
implementation on AltiVec extension to PowerPC is better 
suited for real-time applications running on COTS based 
SDR platforms. 
 

7. CONCLUSIONS 
 
In this paper, we presented the implementation of 
algorithmically intensive turbo product code on the AltiVec 
architecture and compared the execution times with those 
for the Scalar PowerPC processor. It was found that this 
SIMD architecture significantly increases the speed of 
execution with appreciable reduction in code footprint. 
Traditionally, the decoding algorithm was developed by 
keeping Scalar processor in mind where the goal was to 
minimize the number of computations. With the SIMD 
architecture, if proper alignment of data is done to exploit 
parallelism, significant performance speedup is obtained. 
However, the hand coding and manual optimization for 
Vectorization of TPC algorithm is substantially time 
consuming with significant programming effort and there is 
still a bit scope of further optimization to achieve more 
improvement in throughput.  
 The Turbo Product Code is widely used in SDR 
systems for high data rate services and its software 
development using high level language on COTS hardware 
offers enhanced support of rapid prototyping solutions on 
SDR platforms with ease of portability and 

reconfigurability. The technique discussed in Vectorized 
version can be easily extended to 3D TPC decoder for 
increase in system performance without upgrading 
hardware.  
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