

TURBO PRODUCT CODE IMPLEMENTATION ON ALTIVEC EXTENSION

TO POWERPC

Sonali Agarwal (DEAL, Dehradun, Uttarakhand, India; sonaliagr@gmail.com);
Jasvinder Singh (DEAL, Dehradun, Uttarakhand, India; d.jasvinder@gmail.com); and

M.H.Rahaman (DEAL, Dehradun, Uttarakhand, India; dealdrdo@del2.vsnl.net.in)

ABSTRACT

Real time implementation of coding schemes suitable for
radio application with high throughput requirement in low
SNR conditions poses a serious challenge to the overall
radio design. Amongst various channel coding schemes,
Turbo-Code is the most promising choice in many radio
systems for high data rate services with superior BER
performance. However, turbo decoding is highly
computationally intensive, and its real time implementation
requires considerable processing power. To address this
issue, we propose a new Vectorized approach for
implementing Turbo Product Code (TPC) Decoder on
PowerPC based COTS hardware used for developing SDR
based communication systems. In this paper, we have
discussed the implementation and performance of Scalar as
well as Vectorized version of TPC decoder based on
extended block code BCH (16,11,4) on G4 generation of
PowerPC MPC7447A. Both the versions of TPC decoder
when compiled using the WindRiver diab Compiler (version
5.4.0) with the same compiling, linking and optimization
options, the Vectorized approach offers both significant
speedup and complexity reduction over the conventional
Scalar implementation.

1. INTRODUCTION

Forward Error Correcting (FEC) block is one of the
important components of an SDR system. It allows the SDR
system to preserve spectral efficiency and improve the
quality of the transmission, which is an important
requirement in today’s digital world. The demand for
greater data throughput is increasing for all communication
systems, and will continue to grow. At the same time,
tolerance for data errors and data latency is diminishing, and
that trend will like-wise persist. These demands play
directly to the strength of robust FEC schemes. Turbo
Product Codes bring the most value for communication
systems that have high data rates, require low coding
overhead, and exhibit the need for the utmost in data
integrity [1].

 Since TPC decoder involves exhaustive mathematical
operations, many time-consuming functions of this
algorithm can be optimized if the underlying parallelism is
investigated and then applying parallel processing to
speedup the execution [1].
 General Purpose Processors (GPPs) are attractive for
the digital signal processing requirements of software
defined radio as most of the key communication kernels can
be executed on these general purpose programmable
platforms, instead of dedicated hardware. For platforms
where the power budget allows the use of GPPs,
development cost and time to market can be significantly
reduced compared to dedicated DSPs. Major microprocessor
vendors have announced high performance parallel
processing extensions to their general purpose processors in
an effort to concurrently address high bandwidth data-
processing and algorithmically intensive applications [2].
This paper jointly discusses the processor architecture and
characteristics of the decoding algorithm and proposes a
SIMD-friendly implementation of TPC decoder. Although
described here in the AltiVec context, this implementation is
applicable to any SIMD (Single Instruction Multiple Data)
architecture.
 The paper is organized as follows. Section 2 is
dedicated to brief description of Turbo Product Codes and
the decoding algorithm. Section 3 deals with the real-time
Scalar PowerPC implementation of the decoder. A brief
overview of SIMD architecture is portrayed in Section 4.
The Vectorized implementation of TPC decoder using
AltiVec technology along with code optimizations is
described in Section 5. Section 6 presents the promising
results of throughput improvement of our Vectorized
approach over conventional Scalar PowerPC
implementation. Finally, concluding remarks are given in
Section 7.

2. TURBO PRODUCT CODES

In 1993, Berrou presented turbo code that consists of two
recursive systematic convolutional codes concatenated in
parallel. Its outstanding performance is possible due to the
employment of random interleavers and iterative soft-input

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:sonaliagr@gmail.com
mailto:d.jasvinder@gmail.com
mailto:dealdrdo@del2.vsnl.net.in

soft-output (SISO) decoding algorithms. An alternative to
convolutional turbo codes is Turbo Product Codes. TPC is
block product code with turbo decoding algorithm. Pyndiah
has devised a low-complexity block turbo decoding
algorithm which has three appealing features for high bit
rate applications; First, it has inherited from the low
complexity of algebraic decoders; Second, the turbo process
converges in only four iterations [3]. Third, TPC has a
structure not requiring additional interleaving. That’s why
the product code is a simple and efficient method to
construct powerful codes using a classic linear block code
that combines high coding gain and acceptable delay.
 Let us consider two systematic linear block codes C1
having parameters (n1, k1, δ1) and C2 having parameters (n2,
k2, δ2) where ni, ki and δi (i=1, 2) stand for code length,
number of information symbols and minimum Hamming
distance respectively. The product code P = C1 C2 is
obtained by:
• placing (k1 x k2) information bits in an array of k1

rows and k2 columns,
• coding the k1 rows using code C2,
• coding the n2 columns using code C1.

The parameters of the resulting product code P is given
by n=n1xn2, k=k1xk2 and δ=δ1xδ2 and the code rate R by
R=R1xR2 where Ri is the code rate of code Ci.

For this implementation, we have used a product code P
with C1 = C2 = BCH (16, 11, 4) which is an extended BCH
code. The minimum distance δ is then equal to 16 and the
code rate 0.473.

2.1. TPC Decoder

The main idea behind iterative decoding is to break up the
decoding problem into a sequence of stages or iterations,
such that each stage utilizes the output from the previous
stages to formulate its own result.
 Amongst various decoding algorithms, Chase-II
Algorithm for iterative decoding of TPCs presents a
possibility for optimal decoding, has lesser computational
complexity for the same performance and offers ample
flexibility in terms of performance-complexity tradeoff [4].
Some key points involved in the decoding algorithm are as
follows [5]:
• The component block codes are decoded using soft

decision decoding,
• Iterative decoding with the Hamming threshold is

used, that not only results in a significant coding gain
but also a faster iterative process [6],

• Small values (<0.5) are used for constants α (weight
factor) and β (reliability factor) in the first iteration
where the BER is high and gradually increased at
each additional iteration.

 The decoding procedure has been fully described in
[7]. Thus, we shall here give only a brief description of the

algorithm for the sake of clarity. The basic component of
TPC Decoder is the SISO decoder used for decoding the
rows and columns of product code. It is a modified Chase
algorithm which starts by computing the maximum-
likelihood (ML) codeword using the log-likelihood ratio
(LLR) of the bits at the input of the SISO decoder. For each
bit of the ML codeword, it then computes the log-likelihood
ratio which is the soft output of the decoder. The reliability
of the decision dj is the LLR of transmitted symbol ej which
is given by the following relation [8]:

⎪⎩

⎪
⎨
⎧

≠

=
=

⎪
⎩

⎪
⎨

⎧

×

≠
=
∑

≠=

c
i

d
i

c
i

d
i

i

d
i

n

jii

c
j

d
ji

d
ii

j

ccif

ccif
pwhere

elsec

ccifpcr
W

1

0

,1

β

where Wj is the extrinsic information of the jth bit, ri is the
received codeword bit, ci

d is the detected codeword bit(ith)
and ci

c is the concurrent codeword bit(ith). The basic flow of
the algorithm is illustrated in Fig. 1. [8].

[W(m+1)]Decoding of Rows or
Columns

of Product Code

Delay Line
[R] [R] [R]

[W(m)] [R(m)]

α(m)

β(m)

[W(m+1)]Decoding of Rows or
Columns

of Product Code

Delay Line
[R] [R] [R]

[W(m)] [R(m)]

α(m)

β(m)

Decoding of Rows or
Columns

of Product Code

Delay Line
[R] [R] [R]

[W(m)] [R(m)]

α(m)

β(m)

Fig.1. Block diagram of elementary TPC decoder (mth half-
iteration)

• [R] is the received codeword (row/column)
• [W(m+1)] is the additional information given by the

previous decoder concerning the reliability of the
decoded bit (extrinsic information),

• [R(m)] = [R] + α(m).[W(m)],
• α(m) and β(m) are weight and reliability constants

 respectively, which depend on the current half-
 iteration.

3. SCALER POWERPC IMPLEMENTATION

Conventional PowerPC implementation involves sequential
processing i.e. computes one value at a time that introduces
an extra overhead to call a routine number of times to
perform the same operation on multiple pieces of data.
 The major building blocks of TPC decoding algorithm
are Hard Decision Computation, Forming Subset of
Candidate Codewords, Metric Calculation and Extrinsic

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Information Calculation [9]. These tasks are considered to
be performance bottlenecks because of several mathematical
operations like multiplication, accumulation, logical
exclusive-OR etc. Their implementation involves excessive
loops and branching that severely limits the execution speed
of the decoding algorithm.
 WindRiver’s Workbench 2.5 IDE is used to edit/debug
the TPC decoder source code and the object file is
downloaded on Champ AV-IV board having PowerPC
MPC7447A. The complete Scalar C code of decoding
algorithm was compiled using diab compiler version 5.4.0
(WindRiver) with –XO–Xsize-opt optimization options to
produce the fastest code possible. The 16Kbytes of object
file when downloaded on the target platform yields 30 Kbps
throughput (approx.). This low throughput restricts the
Scalar implementation of TPC in high data rate applications
developed over general-purpose platforms.

4. SIMD ARCHITECTURE

The primary requirements of hardware intended for
Software Defined Radio systems are flexibility and
programmability. The flexibility of the original SDR
concept comes at the price of excessive demand for
computational power and its associated problems. Selecting
the best choice of processing resources is arguably the most
critical problem faced in the course of developing any
software radio or multi-waveform platform. GPPs have been
a preferable choice for SDR systems due to their large
amounts of program and user memory, floating-point
operation and better high-level language development
environments.
 Various SIMD extensions to GPP have been classified
on the basis whether the separate execution unit is employed
for vector processing or the existing floating point unit is
used. Some are constrained by backward compatibility and a
desire to limit silicon investment to a small fraction of the
processor die area by overloading their floating-point (FP)
registers to accommodate vector data. These extensions
eliminate the need to modify the operating system by
significantly compromising performance. Few extensions
use new register files exclusively to FP registers to
accelerate the next level of performance driven, high-
bandwidth communications and computing applications [2].
 AltiVec Technology added to the industry standard
PowerPC can be most accurately thought of as a set of
registers and SIMD execution units [10]. It offers a simple
software-based high-performance computing model to the
system engineer. Software based multiprocessing can be
used to further increase the capabilities of a system, not to
mention providing the ability to revise and refine algorithms
in software with no changes required to the underlying
hardware platform. This new computational engine operates
concurrently with the existing integer and floating-point

units, allowing highly parallel operations with simultaneous
execution of up to 16 arithmetic operations in a single clock
cycle. One can freely intermix Scalar integer, floating-point
and vector instructions in the source code without impacting
a program's performance. Fig. 2 shows the architectural
view of the AltiVec unit [10].

Fig.2. AltiVec architectural diagram with three Vector ALUs and
one Permute unit

5. VECTORIZED IMPLEMENTATION

In order for the iterative decoding algorithms to be
practically feasible, the complexity in each stage, in terms of
number of operations and hardware complexity should be
comparable to that of the original non-iterative decoding
algorithms. At the same time, the performance should
approach the optimum, maximum likelihood decoding
performance in terms of bit error rate.
 Turbo Product Code decoding algorithm provides
ample opportunities for parallel execution and thus
performance increases. Vectorization performs computation
on multiple elements at a time, i.e. vector processing
reduces the fetch and decode bandwidth as the number of
instructions fetched are less. Since a block of 256
independent elements is required to be processed with same
series of operations by the decoder in minimum possible
time, AltiVec unit meets this requirement. The AltiVec
version for TPC decoding takes advantage of this data
parallelism.
 The manner in which the 128-bit wide AltiVec registers
are split is important [11]. In TPC decoder, the data is
represented as 32-bit, hence 4 samples in a vector are
processed simultaneously. In our parallel approach, each
row/column of 16 floating point elements is represented by
four floating-point vectors that are processed using AltiVec
instruction set in the smallest possible time. However, for a
16-bit or 8-bit quantized data, more parallelism can be
obtained.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5.1. Programming with AltiVec

Writing AltiVec code for DSP algorithms at assembly
language level is very time-consuming in general, but C
Programming Model for AltiVec enables facile use of
AltiVec within any C, C++ program with less development
time [11]. We have enabled the implementation using C
intrinsics that has the following characteristics:
• Dynamic Flexibility
• Portability
• Software Reuse
• Improved code readability

 The AltiVec C/C++ programming model provides a
way to match the parallelism in TPC decoding algorithm to
the functional units provided by AltiVec technology.

5.2. Code Optimizations

Our goal is to optimize the TPC decoder for computation
time. It is critical to have all code and critical data segments
reside on-chip. Since large blocks of data are needed to be
stored efficiently in the internal memory for every
subsequent iteration, limited on-chip data memory size of
64KB imposes a challenging task on the optimization of
highly complex iterative TPC Decoder. The following code
optimizations were done during the implementation of
iterative soft decoding algorithm for product codes. The
code is optimized with respect to execution time and
memory usage.

5.2.1. High Throughput Design
High Throughput Designs focus on moving as much data
through the calculation as possible in the shortest amount of
time [12]. By implementing high-throughput functions of
TPC decoder, we have gracefully eliminated the overheads
like cost of saving and restoring vector registers, organizing
data within register, and loading/assembling constants
associated with AltiVec accelerated functions.

5.2.2. Globals and Constants
Globals and Constants are cycle and bandwidth wasters.
This is especially true of globals [12]. When we use a global
in a tight loop, the compiler can't be sure that some other
thread isn't changing that global. As a result, the global is
freshly loaded every time through the loop. To avoid this, a
stack variable is declared and global is copied into it. Hence
in our implementation, loading overhead is reduced by
generating constants and globals on the fly.

5.2.3. Data Organization and Alignment
 In order to take advantage of high throughput code
architecture, all data is kept in one place and accessible as
an array [12]. If one is jumping around in memory,
especially if one can’t even load data as whole vectors,

performance will be poor. Since AltiVec Unit does not
automatically or transparently handles unaligned Loads and
Stores, this problem is addressed by proper data alignment
in software although it had substantial effects on the speed.

5.2.4. Uniform vs. Non-uniform Vectors
The functions using non-uniform vectors become more
complicated with a lot of permute operations, data shuffling
on stack, redundant calculations and lost opportunity for
parallelism [12]. We have used uniform vectors that are
typically easier to read and write and they rarely require the
use of the permute unit at all.

5.2.5. Eliminate Branching
We have avoided the use of conditional jumps as it is
difficult for the processor to predict whether to jump or not.
Since mispredictions cause undesirable stalling, we have
attempted the limited use of conditional jumps as much as
possible in the core of the algorithm [12].
 Here are few of the optimized Vectorized routines used
in TPC decoding algorithm that are frequently called and are
the performance bottlenecks in conventional Scalar
PowerPC implementation.

• Hard Decision

for (i = 0; i<16; i++) {

 vecHardCode[i][0] =
vec_abs(vec_cmplt(vecRecUpCode[i][0], zeroF));

vecHardCode[i][1]=
vec_abs(vec_cmplt(vecRecUpCode [i][1], zeroF));
 vecHardCode[i][2]=
vec_abs(vec_cmplt(vecRecUpCode [i][2], zeroF));
 vecHardCode[i][3]=
vec_abs(vec_cmplt(vecRecUpCode[i][3], zeroF));
 }
// When processor encounters a branch instruction and
conditional data is not available, the processor guesses…If
guessed wrong, it will back trace the decision point and start
over. To reduce computational latency, branching (use of if-
then-else) is eliminated by using vec_cmplt () instruction
[12].

• Candidate Codewords Formation

 for (i=0; i<8; i++) {
 vecTestPattern[i][0]=vec_xor(vecTestPattern[i][0],
vecHardCode[row][0]);
 vecTestPattern[i][1]=vec_xor(vecTestPattern[i][1],
vecHardCode[row][1]);
 vecTestPattern[i][2]=vec_xor(vecTestPattern[i][2],
vecHardCode[row][2]);
 vecTestPattern[i][3]=vec_xor(vecTestPattern[i][3],
vecHardCode[row][3]);

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

}
// loop unrolling eliminates data dependency, Single
vec_xor instruction performs logical exclusive-OR
operation between two vectors each consisting of four
floating-point elements.

• Metric Calculation

for (i=0; i<rSet; i++) {
 Vec1 = vec_madd(vecZdash[i][0],
vecRecUpCode[row][0], zeroF);
 Vec2 = vec_madd(vecZdash[i][1], vecRecUpCode
[row][1], zeroF);
 Vec3 = vec_madd(vecZdash[i][2], vecRecUpCode
[row][2], zeroF);
 Vec4 = vec_madd(vecZdash[i][3], vecRecUpCode
[row][3], zeroF);
 }
// Single vec_madd instruction for multiply-accumulate
operation, Loop over the length of the vectors, this time
doing 4 vectors in parallel to stuff the pipeline. We have
unrolled the loop to allow multiple vec_madd to pipeline
with one another. This is now possible because the result
from one vec_madd is not used in the next one.

• Search for Concurrent Codeword

typedef union
 {
 vector float vecDetectedCode[4];
 float detectedCode[16];
 } vec_detectedCode;
for (j=0; j<16; j++)
 {
 temp = 0;
 for (i=0; i<rSet; i++)

 {
if (vDetectedCode.detectedCode[j] !=
vZdash.zDash[i][j])

{
 ii[temp] = i;
 temp++;

}
}

 }
// A union allows member wise access to vector float. It
provides 16 byte alignment to non-vector types independent
of 8 byte stack frame alignment and prevents unaligned
access.

6. RESULTS AND DISCUSSIONS

We have simulated the complete Scalar C code of TPC for
gaussian channel in Microsoft Visual C++6.0 IDE. Fig. 3
shows the performance characteristics for (16,11,4)2 TPC,

iteration by iteration, in terms of bit error rate (BER) vs.
signal to noise ratio (SNR) curves. At BER of 10-5, 6 dB of
coding gain is achieved after four iterations as compared to
uncoded system. As can be seen from the figure, there is no
significant improvement in performance after four
iterations.

Fig. 3. BER vs. Eb/N0 of product code [BCH (16,11,4)2] on a
Gaussian Channel

 The Vectorized C code implementation of decoder
using 32-bit floating point representation (without
quantization) was compiled using AltiVec enhanced diab
compiler (WindRiver) version 5.4.0 and –XO–Xsize-opt
optimization options (same as for Scalar code). The
resultant object file of size 7Kbytes when downloaded on
the target platform only takes 0.48ms of execution time
giving a throughput of 252 kbps, while the Scalar PowerPC
implementation over the same platform generated 16 Kbytes
of object file with throughput of 30 Kbps as shown in Fig. 4.
Hence, we have achieved 8x speedup with considerable
reduction in object file size as compared to the conventional
Scalar version. This is one of the fastest implementation of
TPC on a single GPP described to date.

Fig. 4. TPC: Vector vs. Scalar Implementation Results (Both
Implementations were carried out on MPC7447A@1.0 GHz)

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 The main reasons for the speedup are as follows: First,
we have efficiently exploited the inherent data-
independency of TPC to implement a SIMD-friendly
algorithm. Second, the load/store instructions in the
iterations are saved as all the variables can be stored in
AltiVec registers. Thirdly, the AltiVec version does 4
multiplications and 4 additions in one cycle as opposed to 8
to do the same in Scalar PowerPC implementation.
Therefore, the optimized, vector based TPC decoder
implementation on AltiVec extension to PowerPC is better
suited for real-time applications running on COTS based
SDR platforms.

7. CONCLUSIONS

In this paper, we presented the implementation of
algorithmically intensive turbo product code on the AltiVec
architecture and compared the execution times with those
for the Scalar PowerPC processor. It was found that this
SIMD architecture significantly increases the speed of
execution with appreciable reduction in code footprint.
Traditionally, the decoding algorithm was developed by
keeping Scalar processor in mind where the goal was to
minimize the number of computations. With the SIMD
architecture, if proper alignment of data is done to exploit
parallelism, significant performance speedup is obtained.
However, the hand coding and manual optimization for
Vectorization of TPC algorithm is substantially time
consuming with significant programming effort and there is
still a bit scope of further optimization to achieve more
improvement in throughput.
 The Turbo Product Code is widely used in SDR
systems for high data rate services and its software
development using high level language on COTS hardware
offers enhanced support of rapid prototyping solutions on
SDR platforms with ease of portability and

reconfigurability. The technique discussed in Vectorized
version can be easily extended to 3D TPC decoder for
increase in system performance without upgrading
hardware.

8. REFERENCES

[1] Patrick ADDE and Ramesh Pyndiah, “Recent simplifications

and improvements in Block Turbo Codes,” 2nd International
symposium on Turbo codes and related topics, Brest, France-
2000.

[2] Keith diefendorff , Pradeep K. Dubey, Ron Hochsprung,
Hunter Scales, “AltiVec Extensions To PowerPC Accelerates
Media Processing,” IEEE Micro, March/April 2000,pp.85-96.

[3] R. Pyndiah, “Near-optimum decoding of product codes:
Block turbo codes,” IEEE Trans. Commun., vol. 46, pp.
1003–1010, Aug. 1998.

[4] Cenk Argon and Steven W. McLaughlin, “An Efficient Chase
Decoder for Turbo Product codes,” IEEE Trans. on
Communications, vol. 52, No. 6, June. 2004.

[5] R.Pyndiah, A.Glavieux, A.Picart, and S.Jacq, “Near optimum
decoding of product codes,” in Proc. IEEE GLOBECOM’94
Conf.,vol.1/3, San Francisco, CA, Nov.-Dec. 1994, pp. 339-
343.

[6] A. Mahran and M. Benaissa, “Iterative Decoding with a
Hamming Threshold for Block Turbo Codes,” IEEE
Communication Letters, Vol.8, No. 9, September 2004.

[7] Patrick ADDE, Ramesh PYNDIAH, Olivier RAOUL and
Jean-Rene INISAN , “Block Turbo Decoder Design,”
International Symposium on Turbo Codes, Brest, France-
1997.

[8] Ramesh Pyndiah, “Iterative Decoding of Product codes:
Block Turbo Codes,” International Symposium on Turbo
Codes, Brest, France-1997.

[9] Andre GOALIC and Ramesh PYNDIAH, “Real-Time Turbo
Decoding of Product Codes on a Digital Signal Processor,”
International Symposium on Turbo Codes, Brest, France-
1997.

[10] www.freescale.com/files/32bit/factsheet/ALTIVECFACT.pdf
[11] Motorola Inc., “AltiVec Technology Programming Interface

Manual,” 1999.
[12] Ian Ollmann, “Practical AltiVec Strategies,” 2001.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

http://www.freescale.com/files/32bit/factsheet/ALTIVECFACT.pdf

	Home
	Search by Session
	Search by Author

