
A HIGH SPEED WIRELESS LAN RADIO RECEIVER IN SOFTWARE 
 

Mohamed Ismail, Toshiba Research Europe Ltd., Bristol, UK, 
 mohamed.ismail@toshiba-trel.com

 
 

ABSTRACT 
 
As wireless LAN speeds increase on the back of ever 
more sophisticated processing algorithms the 
commensurate need for greater processing power 
becomes a challenge. The mass-market computing world 
has recently seen a move away from ever increasing clock 
speeds to multi-core platforms. Thus, with potentially 
redundant computing power the question of applying it to 
realise the core functions of a high-speed wireless LAN 
was investigated. Three functions central to any future 
high-speed wireless LAN demanding significant 
computational resources were identified, Fast Fourier 
Transform (FFT), matrix decomposition and channel 
decoding (error correction decoding). These functions 
were implemented on a standard server platform with an 
Intel Xeon™ processor with execution times 
benchmarked for different solutions. 
 
 

1. INTRODUCTION 
 
The new generation of wireless standards are necessarily 
more complex than those before consequently 
development time and cost increase with each new 
standard. Software development tools and methods are 
mature and well understood by most engineers but more 
importantly well established mechanisms exist for code 
reuse and reconfiguration. Add to this the evolutionary 
nature of standards, e.g. GSM, GPRS, EDGE, then a need 
for a versatile platform becomes clear; versatility that is 
difficult to realise in traditional hardware based solutions 
but readily available in software solutions. 
 
 Commercialisation of software radio solutions has 
been pioneered by Vanu Inc. particularly in the area of 
cellular technology. In [1] a description of Vanu’s 
software radio technology highlighting benefits of 
software radio over software defined radio is given. 
 
 Desktop and mobile general purpose computing 
platforms are managing to cram in ever more processing 
power and storage capacity with the latest offerings being 
multi-core, multi-gigabyte, wireless LAN devices. It is 
this coming together of significant computing power and 
emerging high-speed (e.g. IEEE 802.11n) wireless 
technology on a single platform which has motivated the 

investigation into the possibility of using general purpose 
hardware and software for realising software radio 
architectures. 
 
 The proposed IEEE 802.11n high throughput 
standard points the way for algorithms necessary for high-
speed wireless communication. Highlighted below are 
three areas believed to be key in achieving robust high 
throughput and being computationally demanding. 
 
 Modern wireless standards are reliant on Multiple-
Input-Multiple-Output (MIMO) radio technology for 
reliability, in the form of spatial diversity, and 
throughput, in the form of spatial multiplexing. A 
common requirement in MIMO enabled receivers is the 
need to perform complex matrix inversion or 
decomposition. The number of transmit and receive 
antenna determining the size of the matrix. Such a 
computation would be required for every transmission 
channel employed by the system.  
 
 Orthogonal Frequency Division Multiplexing 
(OFDM) is the basis of many high-speed wireless 
standards whereby the available spectrum is represented 
as a bank of overlapping (though not interfering) 
frequencies. A key operation used in translating data from 
the time domain to the frequency domain is the Fast 
Fourier Transform (FFT). An attractive hardware solution 
for realising FFTs is by way of the butterfly operation [2] 
since it can be done in parallel. However, for a single 
processor such a solution may not be optimum. 
 
 Forward Error Correction (FEC) is deployed in 
wireless communication systems to decrease the 
probability of receiving an incorrect transmission. The 
most widespread FEC scheme is convolutional coding 
due to its simplicity in encoding and availability of 
optimal decoding solutions. The Viterbi algorithm gives 
the Maximum-Likelihood (ML) symbol sequence 
transmitted based on the received data and the trellis of 
permissible state transitions as defined by the 
convolutional code. A principal operation in the Viterbi 
algorithm is an Add-Compare-Select (ACS) operation for 
each output symbol with the number of comparisons 
being 2K where K is the constraint length of the 
convolutional code. One method of improving throughput 
for a Viterbi decoder would be to introduce parallelism in 

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:mohamed.ismail@toshiba-trel.com


carrying out ACS operations. With a general purpose 
processor, lacking a high degree of parallelism, an 
alternative decoding algorithm is necessary such as 
sequential decoding [5]. 
 
 The aforementioned three functions were chosen for 
implementation on a Commercial-Off-The-Shelf (COTS) 
PC using readily available software development tools. 
Execution time was measured for various 
implementations with a view to benchmarking likely 
performance. 
 
Section 2 describes the platform and software 
environment used to implement and develop the 
algorithms. Section 3 describes implementation of the 
FFT algorithm and the results obtained. Section 4 outlines 
the MIMO decoder problem deriving a direct-form 
solution and compares the performance against standard 
matrix decomposition algorithms. Section 5 details the 
channel decoding problem comparing the performance of 
a sequential decoding solution against a Viterbi solution. 
 

2. PLATFORM CONFIGURATION 
 
Testing was conducted using an NEC 120Re-1 server 
running Mandriva™ Linux 2006 (kernel 2.6.12-12) 
configured with one single core 3.2 GHz Intel Xeon™ 
processor (with an 800 MHz front side bus) and 1 GB of 
RAM. All code was written using C/C++ and compiled 
using the Intel C compiler (9.1) with full optimization (-
O3 -xN) linking to the Intel Maths Kernel Library (8.1) 
where required. 
 

3. FAST FOURIER TRANSFORM 
 
Traditionally, designers aim to minimise the number of 
operations required to perform an FFT operation 
optimised for a particular FFT size and precision. 
However, with current (and future) microprocessors this 
criterion is far less important due to their excellent, in 
terms of throughput, floating point capability and  
numerical precision. A more significant factor affecting 
performance is the interaction between main memory and 
processor. Addressing this bottleneck [3] describes an 
FFT solution optimised to run on a modern 
microprocessor architecture showing how by careful 
selection of parameters significant improvements in 
throughput can be obtained. For this study the Intel Maths 
Kernel Library (MKL™) was chosen to provide FFT 
routines optimised for the Intel family of processors. 
 

Four possible combinations of precision and type 
were evaluated: 

 

 
9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• single, real 
• single, complex 
• double, real 
• double, complex 
 
Where single precision was represented by 32 bit 

floating point values and double precision was 
represented by 64 bit floating point values. 
 

An in-place FFT was performed for FFT sizes 
ranging from 32 point up to 512 point in steps of powers 
of two. The computation time was averaged over one 
million iterations with the results shown in Fig. 1. 
 
 A 128 point single precision complex FFT took 
approximately 0.9 µs to calculate which translates to over 
142 MegaSamples/s and is well within the 4 µs time 
frame permitted for processing a received packet in the 
IEEE 802.11n proposed standard. 
 

4. COMPLEX MATRIX DECOMPOSITION 
 
The received signal as seen by a multi-carrier MIMO 
receiver maybe described by the following equation: 
 
         (1) 
where, 

1NRy
×

∈ is the vector of received samples, 
N NR TH

×
∈ is the channel matrix, 

1NTx
×

∈ S is the 

vector of transmit symbols and 
1NRn
×

∈ is a vector of 
AWGN samples with variance 2σ , with being the TN

y Hx n= +

Figure 1 - In-place forward DFT 

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

FFT Size

Ti
m

e 
(u

s)

In-place forward DFT using Intel MKL 8.1, Xeon 3.2 GHz, icc -O3 -xN 

 

 

Single, real
Single, complex
Double, real
Double, complex

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



number of transmit streams and  the number of 
received streams. 

RN

 
MIMO detection is the process of forming an 

estimate of the transmitted symbols, x̂ , based on the 
received symbols and the channel matrix. One common 
formulation of symbol estimates is using the Minimum 
Mean Squared Error (MMSE) technique, given by: 
 

  
            (2) 
 
where, 

TNI is an NT xNT identity matrix. 

 
The term in brackets requiring inversion is 

computationally the most challenging part. For a two-
transmit antenna two-receive antenna system (2x2) the 
term in brackets is a 2x2 matrix. Let A represent the term 
in brackets, then A and HH can be written as follows: 

 
 

 
    
        (3) 
 
 
 
 

 
The four terms of the product A-1HH, excluding for 

clarity the determinant of A, can be written as: 
 
 

 
 

 
     (4) 

 
 

 
The MMSE estimate formed from (4) was coded in C++ 
as an explicit multiply and sum for each of the elements 
of the estimated vector x̂ . In comparison, three well 
established matrix inversion techniques [4] namely; the 
Givens, Fast Givens and the Modified Gram-Schmidt 
(MGS) method were implemented. These 
implementations were compared with the QR 
factorisation (sgeqrf) function provided within the Intel 
MKL 
  

Table 1 summarises results obtained for real and 
complex valued single precision (32 bit), 2x2 matrix 
inversion/decomposition running on the test platform. 

 

Table 1 - 2x2 Real and complex matrix inversion/decomposition 
times 

 
Although the theoretical number of floating point 

operations (flops) [4] required for the real-valued Givens, 
Fast Givens and Modified Gram-Schmidt algorithms are 
16, 10.7 and 16, respectively, execution of which on a 
nominal 3 GHz floating point unit would take no more 
than 6 ns the observed absolute values are significantly 
greater. This was due to main memory accesses which 
typically incur many clock cycles. Using the direct-form 
method gave the best result as it had minimum overheads 
incurring only the cost of floating point operations and 
minimal memory access. The Intel MKL solution is 
significantly slower than the other methods the reason, as 
given by Intel, was due to the MKL library being 
designed for large matrix sizes. 
 

5. OPTIMAL CHANNEL CODING 
 
Convolutional coding is the method of choice for 
reducing the probability of erroneous transmission of data 
over a noisy communications channel. Viterbi decoding 
has become the de-facto algorithm used in the decoding 
of convolutional codes in recent times. Such widespread 
use of the Viterbi algorithm, despite suffering from high 
complexity for convolutional codes with a long constraint 
length, has been possible due to efficient hardware 
solutions. 
 

In contrast to the computational complexity of the 
Viterbi algorithm, sequential decoding is well known for 
having a computational complexity independent of code 
constraint length [5]. Although suboptimal in 
performance, sequential decoding can achieve a desired 
bit error probability when a sufficiently large constraint 
length is taken for the convolutional code. Unlike the 
Viterbi algorithm which locates the best codeword by 
testing, exhaustively, all possibilities, sequential decoding 
tests only a subset of all possible code words based on 
some metric. Commonly, the metric used is a function of 
the received data and thus the sequential decoder 
performance is a function of the noise level present in the 
received signal. 
 

Although sequential decoding offers a less 
computational and therefore potentially quicker decoding 

 Real Valued Complex Valued 
Method Givens Fast 

Givens 
MGS Intel 

MK
L 

Fast 
Givens 

Direct 

Time 
(µs) 

0.09 0.08 0.08 6.7 0.16 0.05 

( ) 12ˆ
T

H H
Nx H H I H yσ

−
= +

11 12 12

12 12 22

11 11 12 12

21 21 22 22

,

H

a a jb
A

a jb a

c jd c jd
H

c jd c jd

+

−

+ +

+ +

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

22 11 12 12 12 12 22 11 12 11 22 12

22 21 12 22 12 22 22 21 12 22 12 22

21 11 21 11 11 12 21 11 21 11 11 12

21 21 21 21 11 22 21 21 21 21 11 22

c c b d j d j d jb c

c c b d j d j d jb c

c b d a c j d jb c ja d

c b d a c j d jb c ja d

a a a a

a a a a

a a

a a

+ + + − +

+ + + − +

− − − − +

− − − − +

−

−

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



solution in the classical form it suffers from a number of 
technical problems: 
 

• Not Maximum-Likelihood decoding 
• Unbounded complexity (can potentially exceed 

Viterbi) 
• Hard decision output 

 
 A number of techniques have been proposed to 
address one or two of these problems, the most 
comprehensive solution being detailed in [6]. The cited 
paper details a Maximum-Likelihood Soft Decision 
(MLSD) sequential decoding algorithm for use with 
binary convolutional codes which has a bounded 
complexity. The authors compare the performance and 
complexity of a Viterbi algorithm (VA) and a standard 
sequential decoding (SA) algorithm (stack algorithm with 
a Fano metric) with the MLSD algorithm. The results 
from [6] show the maximum number of metric 
computations required by the MLSD algorithm not 
exceeding the Viterbi algorithm and the average number 
of metric computations of the MLSD algorithm being 
1.6% of the Viterbi algorithm at a signal-to-noise ratio of 
7dB. 

 
The MLSD algorithm was implemented in C using a 

balanced-tree data structure [7] to efficiently handle stack 
manipulation. 

 
 An Additive White Gaussian Noise (AWGN) 
channel operating at a Signal-to-Noise Ratio (SNR) of 20 
dB was used with 1000 individual runs being averaged to 
derive the timing values. A ½ rate convolutional code 
with a constraint length of seven and generator 
polynomials (147,135) with a block size of 216 bits was 
used for all simulations. Execution time of the MLSD 
algorithm was compared to a C implementation of the 
Viterbi algorithm. 
 
 Execution time for the two algorithms, MLSD and 
Viterbi, was measured to be 0.2 ms and 0.6 ms 
respectively. Although the number of metric 
computations required by the MLSD algorithm is 
significantly lower than the Viterbi algorithm the implied 
gain in execution time is not observed. Once again the 
cost of main memory access impinges upon the execution 
time. Nonetheless, the MLSD algorithm gives significant 
improvements in execution time at good signal-to-noise 
ratios. 
 
 
 
 

7. CONCLUSION 
 
An analysis on the feasibility of using general purpose 
COTS computing architecture for the purpose of 
implementing functions required in a high-speed wireless 
LAN highlighted three areas of comparatively high 
computational cost. Fast Fourier Transforms, complex 
matrix decomposition and optimal channel coding were 
implemented in C/C++ on a COTS server platform 
compiled using standard software tools. A 128 point 
single precision complex FFT, as would be used in an 
IEEE 802.11n system, required 0.9 µs.  A carefully 
designed implementation of a 2x2 complex matrix 
decomposition proved to be over two-thirds faster than 
using a Fast Givens matrix decomposition algorithm. A 
sequential decoding solution was shown to execute in one 
third the time of a Viterbi algorithm when decoding a 
convolutional code. These results demonstrate the 
possibility of using general purpose computing solutions 
that are widely available to undertake computationally 
intense functions necessary for high-speed wireless 
LANs.  
 

8 REFERENCES 

[1]   J. Chapin, “Overview of Software Radio”, Vanu Inc, 
http://www.vanu.com/resources/whitepapers/tech-
overview-whitepaper-3-6-02.pdf. 

[2]  J. W. Cooley and J.W. Tukey, “An Algorithm for 
machine computation of Fourierseries”, Math. Comput., 
19, 297-301, 1965.  

[3] M. Frigo, S.G. Johnson, “FFTW: An Adaptive 
Software Architecture for the FFT”, ICASSP 1998, vol.3 
pp. 1381-1384. 

[4]  G.H. Golub, C.F. Van Loan, “Matrix Computations”, 
3rd edition, Johns Hopkins University Press, 1996, ISBN 
0-8018-5414-8. 

[5] S. Lin, D.J. Jr. Costello, ”Error Control Coding: 
Fundamentals and Applications”, Prentice-Hall, 1983, 
ISBN 0-13-283796-X. 

[6] Han Y.S, Chan P, Wu H, ”A Maximum-Likelihood 
Soft-Decision Sequential Decoding Algorithm for Binary 
Convolutional Codes”, IEEE Trans. Comms., vol. 50, 
no.2, Feb. 2002. 
  
[7] T.H. Cormen, C.E. Leiserson and R.L. Rivest, 
“Introduction to Algorithms”, Cambridge, MA:MIT Press 
1991.  
 

 

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

http://www.vanu.com/resources/whitepapers/tech-overview-whitepaper-3-6-02.pdf
http://www.vanu.com/resources/whitepapers/tech-overview-whitepaper-3-6-02.pdf

	Home
	Search by Session
	Search by Author



