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Abstract—We discuss application of linear equalizers to
multipath wireless channels. We also note that the class
of linear equalizers is divided into two subclasses: symbol-
spaced and fractionally-spaced equalizers. We present a
review of these two subclasses and contrast them against
each other by presenting examples of radio channels. This
study reveals that with a 20 to 30% increase in com-
putational complexity, fractionally-spaced equalizers per-
form significantly better than their symbol-spaced coun-
terparts. We emphasize on packet data transmission and
introduce the cyclic equalizers for initialization of equal-
izer. We review the past literature of cyclic equalizers and
present a novel implementation with a number of perfor-
mance advantages over the methods of the past literature.

Index Terms – Equalizers, Cyclic equalizers, Channel es-
timation.

I. Introduction

Channel equalization is a well-studied topic that was
developed in 1960s and 1970s, mostly in the application
of voice-grade (wired) communication channels. A com-
prehensive review of these works can be found in [1].
Equalizers take two fundamentally different structures:
linear and non-linear. The non-linear structure (also,
known as decision feedback equalizer) uses the decisions
made on the past symbols to improve on the equalized
signal. Although, in theory, non-linear equalizers are su-
perior to their linear counterpart, the possibility of error
propagation, that can occur when a wrong symbol deci-
sion is made, limits the application of decision feedback
equalizers to the cases were symbol error rates are very
low. This excludes the radio channels where channel
fading can result in significant loss in signal-to-noise ra-
tio (SNR) and thus symbol error bursts can occasionally
occur.

The scope of this paper is limited to linear equalizers
applied to multipath wireless channels. We note that
linear equalizers are finite impulse response (FIR) fil-
ters which are designed/adapted to approximate the in-
verse of the channel response. We also note that the
class of linear equalizers can be divided into two sub-
classes: symbol-spaced and fractionally-spaced. In this
paper, we present a review of these two subclasses and
contrast them against each other by presenting exam-
ples of radio channels. This study reveals that with
a 20 to 30% increase in computational complexity, the
fractionally-spaced equalizers, on average, perform sig-
nificantly better than their symbol-spaced counterparts.
We then proceed with introduction of packet data trans-

mission and introduce the cyclic equalizers for initializa-
tion of equalizer, at the beginning of each packet. We
review the past literature of cyclic equalizers and present
a novel implementation with a number of performance
advantages over the methods of the past literature. This
novel implementation has been ignored in the past where
hardware specific designs, with very limited flexibility,
had to be used for the implementation of modems. In
software-defined radios where DSP processors are used
for realization of most of the system blocks, the algorith-
mic method proposed in this paper may be found more
appropriate. The performance advantages are: lower
computational complexity, faster convergence rate, and
significantly better tuning of the equalizer.

Throughout this paper the following notations are ad-
hered to. Vectors are denoted by lowercase bold letters.
Matrices are denoted by uppercase bold letters. The su-
perscripts H and T denote vector/matrix transpose and
Hermitians, respectively. Ts denotes sampling rate, Tb

denotes baud interval, and fb = 1/Tb denotes baud rate.
I denotes the identity matrix.

II. System Models

Communication channels are often modeled by their
equivalent baseband model [2]. The equivalent baseband
channel model is often a FIR filter with a properly cho-
sen tap-spacing. When the equalizer taps are symbol-
spaced, Tb, a FIR filter with tap-spacing Tb conveniently
models the channel and thus is used. When the equalizer
taps are at spacing MTb/L, a FIR filter with tap-spacing
T/L is appropriate and used to model the channel.

Figs. 1 presents the system model for a communica-
tion channel, including the equivalent baseband channel
model and a Tb-spaced equalizer. A similar model for the
case where the equalizer is MTb/L-spaced is presented
in Fig. 2. In both Figs. 1 and 2, ν[n] is channel noise
and is modeled as a Gaussian process whose correlation
properties is determined by a front end filter which is
used to capture the demodulated baseband signal and
to remove out of band signals and noise. Fig. 3 presents
the detail of an MTb/L-spaced equalizer. In this figure
the input signal samples, y[n], are at the rate fs = Lfb,
and the equalizer output is calculated once per every L
samples of input.

III. Performance Study of Equalizers

When one has access to the statistics of the transmit-
ted data symbols, the channel response (the equivalent
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⊕c[n]

Fig. 1. Discrete-time equivalent baseband model of a communi-
cation system when samples at the equalizer input are taken
at the symbol rate, fb = 1/Tb.

⊕c[n]

︸ ︷︷ ︸

Fig. 2. Discrete-time equivalent baseband model of a communi-
cation system.

baseband channel), and the statistical characteristics of
the channel noise, it is possible to evaluate and study
the equalizer performance based on the Wiener filters
theory, [3], [4]. In this section, we take this approach
to provide an insight to the performance of the symbol-
spaced and fractionally-spaced equalizers.

A. Wiener-Hopf equations

A.1 Symbol-spaced equalizer

To develop the Wiener-Hopf equations for the design
of equalizers, we begin with the case of symbol-spaced
equalizer. A system model for this case is shown in
Figure 4. In this model, pR[n] is the receiver front-
end filter (often matched with a transmit pulse-shape
pT[n] = pR[−n]), ∆ is the propagation delay of the chan-
nel, and νc[n] is a white Gaussian noise with variance
σ2

νc

. The transmit data stream s[n] is also modeled as a
white sequence with variance σ2

s .

The equalizer tap weights w[n] should be selected to
minimize output error e[n]. Following a relatively long,

⊕

Fig. 3. Details of a fractinally-spaced equalizer with tap-spacing
(M/L)Tb.

⊕ ⊕

Fig. 4. System set-up for study of a symbol-spaced equalizer.

but straightforward, derivations, the following results
can be derived [5]:
• The equalizer tap-weight vector that minimizes the
mean-square value of e[n] is

wo = R−1p. (1)

where R = QTQ∗ and p = QTd∗, and

Q =





C
σνc

σs

P0

σνc

σs

P1



 ,

C =











c[0] 0 0 · · ·
c[1] c[0] 0 · · ·
c[2] c[1] c[0] · · ·
...

...
...

. . .











,

P0 =











p0
R[0] 0 0 · · ·

p0
R[1] p0

R[0] 0 · · ·
p0
R[2] p0

R[1] p0
R[0] · · ·

...
...

...
. . .











,

P1 =











p1
R[0] 0 0 · · ·

p1
R[1] p1

R[0] 0 · · ·
p1
R[2] p1

R[1] p1
R[0] · · ·

...
...

...
. . .











.

p0
R[n] and p1

R[n] are even and odd samples of pR[n], re-
spectively, and d is a column vector with zero elements
everywhere except at position ∆ which is equal to one.
• The minimum mean-squared error, i.e., the value of ξ
when w = wo, is obtained as

ξmin = σ2
s(1 −wH

o p). (2)

A.2 Fractionally-spaced equalizer

For brevity and clarity of presentation, here, we limit
our discussion to a particular case of fractionally-spaced
equalizer where the equalizer taps are at one half of sym-
bol spaced, i.e., when L = 2 and M = 1. Figure 5
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⊕ ⊕↑ 2

Fig. 5. System set-up for study of a half symbol-spaced equalizer.

presents a system set-up that may be used for the study
of a half symbol-spaced equalizer. Using this block di-
agram, straightforward derivations lead to the same re-
sults as (1) and (2), with

Q =

[

C
σνc

σs

P

]

,

C =











c[0] 0 0 0 0 · · ·
c[2] c[1] c[0] 0 0 · · ·
c[4] c[3] c[2] c[1] c[0] · · ·
...

...
...

...
...

. . .











and

P =











pR[0] 0 0 · · ·
pR[1] pR[0] 0 · · ·
pR[2] pR[1] pR[0] · · ·

...
...

...
. . .











.

B. Numerical examples

The above formulations can be used to evaluate the
performance of symbol-spaced and fractionally-spaced
equalizer. A number of such numerical results are pre-
sented in [5]. The conclusions derived from these results
are the followings:

• The performance of the symbol-spaced equalizer can
degrade significantly for some choices of the timing
phase. The fractionally-spaced equalizer, on the other
hand, is almost insensitive to the timing phase.
• In general, when a good timing phase is selected for
a symbol-spaced equalizer and both symbol-spaced and
fractionally-spaced equalizers are chosen to have the
same number of taps (thus, the same complexity), the
symbol-spaced equalizer is more likely to perform better;
achieves a lower minimum MSE and converges faster.
However, since selection of the optimum timing phase
may in general be non-trivial, practicing engineers often
find fractionally-spaced equalizer a better choice.

IV. Cyclic Equalization

Training symbols that are known to the receiver are
often used for initial adaptation of equalizers. It turns
out that if the training sequence is selected to be peri-
odic and have a period equal to the length of the equal-
izer, the equalizer tap weights can be obtained almost
instantly. Moreover, when such training sequences are
used, simple carrier acquisition mechanisms can be de-
veloped. Also, as discussed below, any phase offset in
the carrier will be taken care of by the equalizer. More-
over, the use of the periodic training sequences allows
adoption of a simple mechanism for selection of the time
delay ∆ and, thus, alignment of the data symbol se-
quences between transmitter and receiver. Because of
the limited space, the rest of our discussion will be con-
fined to symbol-spaced equalizer only. Extension of the
proposed methods to fractionally-spaced equalizers will
be straightforward. In addition, the conclusions derived
for symbol-spaced equalizers are equally applicable to
fractionally-spaced equalizers as well.

A. Symbol-spaced cyclic equalizer

Let the periodic sequence · · ·, s[N ], s[0], s[1], s[2],
· · ·, s[N ], s[0], · · · be transmitted through the channel
model shown in Fig. 1. Ignoring the channel noise, a pe-
riodic input to the channel results in a periodic output
y[n]. Now consider an equalizer set-up with the input
y[n] and desired output s[n]. Since, here, s[n] and y[n]
are periodic, one may pick a period of y[n], with a ar-
bitrary starting point, and put them in a tapped-delay-
line/shift-register with its output connected back to its
input. A similar, shift-register is also used to keep one
cycle of s[n]. An equalizer whose tap weights are ad-
justed to match its output with s[n] in then constructed
as shown in Figure 6.

The adaptation algorithm in Figure 6 can be any of
the known adaptive algorithms, including the celebrated
LMS algorithm, or as discussed below one may develop
a matrix formulation for direct computation of the op-
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timum tap weights of the equalizer.

A.1 Adaptation based on the LMS algorithm

We define the column vectors

y0 = [y[n] y[n − 1] · · · y[n − N ]]T

and

w = [w0 w1 · · · wN ]H.

Also, if we define yi as the circularly shifted version of y0

after i shifts and use the LMS algorithm for tap-weight
adaptation, the repetition of the following loop will con-
verge to a tap-weight vector that closely approximates
the optimum vector wo.

for i = 0, 1, 2, · · ·
e[i] = s[i mod N + 1] −wH[i]yi

w[i + 1] = w[i] + 2µe∗[i]yi

end

In the above loop, ‘i mod N + 1’ reads i modulo N + 1,
which means the reminder of i divided by N +1. It thus
generates the ordered indices of the periodic sequence
s[0], s[1], · · ·, s[N ], s[0], s[1], · · ·.

⊕

z
−1

z
−1

z
−1

y[n] y[n − 1] y[n − 2] y[n − N ]

z
−1

z
−1

z
−1

s[N ]s[2]s[1]s[0]

⊕
Adaptation

Algorithm

z
−1

z
−1

Fig. 6. The adaptation set-up for a symbol-spaced cyclic equalizer.

A.2 Direct computation of the equalizer tap weights

We note that the goal here is to minimize the mean
(time averaged value) of the squared error |e[i]|2. We
also note that upon convergence of the cyclic equal-
izer, w[i] will be a fixed vector. Then, recalling that
the equalizer tap-input vector yi is periodic, the out-
put wHyi will be also periodic. Hence, to minimize the

mean-square of e[i], one may resort to minimization of
the 2-norm of the error vector

e = [e[0] e[1] e[2] · · · e[N ]]T.

On the other hand, we note that by conjugating both
sides of the first line in the above ‘for loop’ and combin-
ing the results, for i = 0 to N ,we obtain

s∗ −YHw = e∗ (3)

where Y is an (N + 1)× (N + 1) matrix whose columns
are the equalizer tap-input vectors y0, y1, y2, · · ·, yN .
It is also interesting to note that, in the expanded form,

Y =















y[n] y[n − N ] · · · y[n − 1]
y[n − 1] y[n] · · · y[n − 2]
y[n − 2] y[n − 1] · · · y[n − 3]

...
...

. . .
...

y[n − N ] y[n − N + 1] · · · y[n]















. (4)

Since the choice of w =
(

YH
)

−1
s∗ results in e = 0,

and this clearly minimizes the 2-norm of e, one may
argue that, here, the optimum value of w is obtained
simply by solving the equation

YHw = s∗. (5)

We also note that the solution to this problem is unique
when YH (or, equivalently, Y) is full rank.

When YH has a lower rank than its size, the equa-
tion (5) is underdetermined and thus does not have a
unique solution. One method of dealing with this prob-
lem is to proceed as follows. By multiplying (5) from
left by Y, we obtain

(

YYH
)

w = Ys∗. This is still
an underdetermined equation. However, since the co-
efficient matrix

(

YYH
)

is Hermitian, it is possible to
modify it to a determined equation with a unique so-
lution. This is done by replacing the coefficient matrix
(

YYH
)

by
(

YYH + εI
)

, where ε is a small positive con-
stant. Hence, the cyclic equalizer tap weights may be
obtained by solving the equation

(

YYH + εI
)

w = Ys∗. (6)

It is also important to note that even in the cases
where Y is full rank and, thus, (5) has a unique solu-
tion, the use of (6) is recommended. This is because the
additive noise in y[n] will introduce a bias on the equal-
izer tap weights that may be very destructive when the
equalizer is applied to the rest of the received signal sam-
ples. The addition of εI moderates such a bias.

Because of the special form of the matrix Y, there is
a low-complexity method for solving (6). We note that
Y is a circular matrix, and recall from the theory of
circular matrices, [6], that when Y is a circular matrix,
it can be expanded as

Y = F
−1ΛF (7)
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where F is the DFT transformation matrix and Λ is
the diagonal matrix whose diagonal elements are ob-
tained by taking the DFT of the first column of Y.
Substituting (7) in (6) and noting that FF

−1 = I and
YH = F

−1Λ∗

F , we get

F
−1(ΛΛ∗ + εI)Fw = F

−1ΛFs∗. (8)

Multiplying this equation from left by F and rearranging
the result, we obtain

w = F
−1(ΛΛ∗ + εI)−1ΛFs∗. (9)

Following (9), the computation of the cyclic equalizer
tap weights can be done by taking the following steps:

1. Compute the DFTs of the vectors s∗ and y0, i.e., com-
pute Fs∗ and Fy0. Point-wise multiply the elements of
the two DFT results. This gives the vector ΛFs∗ in (9).

2. Point-wise divide the elements of the result of Part 1 by
the elements of the vector |Fy0|

2 + ε. The result will be
the vector (ΛΛ∗ + εI)−1ΛFs∗.

3. Taking the inverse DFT of the result of Part 2 gives the
desired tap-weight vector w.

To gain a better understanding of the behavior of the
cyclic equalizer, we present some numerical examples.
Since the cyclic equalizer finds the equalizer tap weights
based on a limited number of samples, it can only finds
an estimated of the tap weights. Table I present a set of
results that we have obtained for 4 multipath channels;
namely, c1, c2, c3 and c4. The detail of these channels
and how their equivalent baseband are obtained can be
found in [5]. Here, we have set σνc

= 0.01, pT[n] and
pR[n] are root-raised cosine filters with roll-off factor α =
0.25, and the equalizer length N + 1 = 32.

TABLE I

Performance comparison of the cyclic equalizer with the

achievable MMSE (the optimum equalizer).

Average MSE of
Channel MMSE Cyclic Equalizer

c1 0.000138 0.00380
c2 0.000085 0.00241
c3 0.000644 0.00547
c4 0.000311 0.01832

The results presented in Table I reveals that the cyclic
equalizer achieves some level of equalization. However,
the resulting MSE is an order of magnitude higher than
the minimum achievable MSE. In the sequel, we discuss
a number of fixes to this problem.

V. Equalizer Design via Channel Estimation

As noted above, direct computation of the equalizer
tap weights, through the use of an adaptive algorithm
(e.g., the LMS algorithm) or by using (6) may result in

an inaccurate design. An alternative method that results
in better designs is to first identify the channel and also
obtain an estimate of the variance of the channel noise
and then use the design equations of Section III to obtain
an estimate of the equalizer tap weights.

The channel identification set-up here will follow the
same structure as the equalizer structure in Figure 6,
with the sequences y[n] and s[n] switched. Figure 7
presents a block diagram of such channel estimator. The
samples of impulse response of the equivalent baseband
channel are the tap weights c[0] through c[N ] which
should be found using an adaptive approach or through
the solution of a system of equations, similar to the pro-
cedures suggested above for finding the equalizer tap
weights, w[n].

⊕

z
−1

z
−1

z
−1

y[n]
z
−1

z
−1

z
−1

s[N ] s[0]

⊕
Adaptation

Algorithm

z
−1

z
−1

s[N − 1] s[N − 2]

c[0] c[1] c[2] c[N ]

y[n + 1] y[n + 2] y[n + N ]

Fig. 7. The system set-up for a symbol-spaced cyclic channel
identification.

A. Selection of pilot sequence

We discuss the desirable properties of the pilot se-
quence s[n] and present a class of pilot sequences that
hold such properties. To this end, we note that the dual
of (5), here, is

SHc = y∗ (10)

where
y = [y[n) y[n + 1] · · · y[n + N ]]T (11)

c = [c[0] c[1] · · · c[N ]]H (12)

and

S =















s[N ] s[0] · · · s[N − 1]
s[N − 1] s[N ] · · · s[N − 2]
s[N − 2] s[N − 1] · · · s[N − 3]

...
...

. . .
...

s[0] s[1] · · · s[N ]















. (13)
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Multiplying (10) from left by S and solving for c, we get

c =
(

SSH
)

−1
(Sy∗) . (14)

This solution would become trivial, if we had chosen the
pilot sequence s[n] such S was a unitary matrix, i.e., if
SSH = KI, where K is a constant. In that case, (14)
reduces to

c =
1

K
Sy∗. (15)

In addition to the unitary property of S, in prac-
tice, it is also desirable to choose a set of s[n]’s with
the same amplitudes, so that the transmit power is uni-
formly spread across time. It turns out that such se-
quences exists. They are called polyphase codes, [7].
They exists for any length, N + 1. A particular con-
struction of polyphase codes that we use here follows
the formula

s[n] =

{

ejπn2/(N+1), for N + 1 even
ejπn(n+1)/(N+1), for N + 1 odd.

(16)

B. Impact of the channel noise

In the above equations, for simplicity of derivations,
the channel noise was ignored. If the channel noise is
included, (10) will become

SHc + v∗ = y∗ (17)

where v is the noise vector associated with y. Multiply-
ing (17) from left by 1

K S, we get

ĉ = c +
1

K
Sv∗ =

1

K
Sy∗ (18)

where ĉ is a noisy estimate of c.
One method of improving the estimate of c is to trans-

mit multiple periods of pilot symbols and replace the
vector y by its average obtained by averaging over the
multiple periods.

C. Estimation of the variance of the channel noise

To obtain an estimate of the variance of the chan-
nel noise, we take the following approach. As discussed
above, many operations at the receiver can be greatly
simplified by sending a few cycles of the periodic/pilot
sequence s[n]. Assuming that we have been able to iden-
tify a portion of the received signal sequence y[n] that is
associated with the periodic sequence s[n] and note that

y[n] = c[n] ? s[n] + ν[n], (19)

one finds that the first term on the right-hand side of
(19) is periodic. Hence,

z[n] = y[n] − y[n + N ] = ν[n] − ν[n + N ]. (20)

Now, if we assume that ν[n] and ν[n + N ] are uncorre-
lated, a time average of |z[n]|2, obviously, gives an esti-
mate of 2σ2

ν .

D. Comparisons

To give of an idea of the performance difference of a
direct cyclic equalizer design and its indirect counter-
part, where an estimate of the channel is used to design
the equalizer, we present some numerical results. The
results are presented in Table II. This is an extension
of Table I. As was predicted, the results clearly show a
much superior performance of the indirect method.

TABLE II

Performance comparison of the cyclic equalizers for

direct and indirect setting.

Average MSE of Cyclic Equalizer
Channel MMSE Direct Indirect

c1 0.000138 0.00380 0.000240
c2 0.000085 0.00241 0.000151
c3 0.000644 0.00547 0.000750
c4 0.000311 0.01832 0.000676

VI. Conclusion

A review of linear symbol-spaced and fractionally-
spaced equalizers, when applied to wireless channels, was
presented. We also reviewed the use of cyclic equalizers
when applied to packet data transmission. We showed
that direct adaptation of cyclic equalizer, that has been
used in the past, results in designs with relatively high
mean-square error (MSE). We proposed a novel solution
that first identifies the channel and uses the identified
channel to calculate the equalizer coefficients. Numeri-
cal results show that this new method performs signif-
icantly better. We also contrasted symbol-spaced and
fractionally-spaced equalizers and found that the lat-
ter with a slightly higher computational complexity per-
forms significantly better than the former. Moreover, it
was noted that fractionally-spaced equalizers have the
advantage of being insensitive to timing phase.
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