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ABSTRACT 
 

The poles of a recursive digital filter shift their position when 
the denominator polynomial coefficients are quantized to a 
fixed bit width approximation. The size of the root migration 
due to coefficient quantization increases with filter order and 
is more severe with reduced bandwidth. A sufficient number 
of bits must be allocated to the quantized coefficients to pre-
serve the spectral fidelity of the filter design. Narrowband 
low pass filters also exhibit large numerical gain which leads 
to extended bit width requirements for internal registers and 
multipliers. We present a technique to implement high order 
very low-bandwidth recursive lowpass filters without the 
brute force requirement for extended precision coefficients 
and registers. 
 

1. INTRODUCTION 
 
Within a scale factor, a recursive digital filter is defined by 
its poles and zeros, the denominator and numerator roots of 
its transfer function.  The roots are often presented graphi-
cally as in figure 1. The denominator and numerator polyno-
mials formed by expanding the factored form are shown in 
(1). Without quantization, the two denominators of (1) are 
identical. With coefficient quantization, the coefficients (am) 
are replaced with approximate coefficients (am+Δam), which 
causes the roots to move from (pm) to (pm+Δpm). 
 

                       
Figure 1. Pole-Zero Diagram of 5-th Order IIR Filter 
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We estimate the change Δpm in root pm due to the change Δam 
of the coefficient am using sensitivity analysis. Equation 2 
shows the sensitivity coefficient.    
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To first order, the polynomial root Pm moves the reciprocal 
of the denominator of (2) which is seen to be the product of 
the distances between the root Pm and the remaining roots Pn 
of the polynomial. Thus if we have 5 roots in the same poly-
nomial, and the distance from a selected root to each of his 
four companions is on the order of 10-2, the expected root 
shift is on the order of 10+8 times the change in the coeffi-
cient. Root locus considerations suggest that the roots move 
radially out from their center of gravity, thus, almost assur-
edly, at least one root will move outside the unit circle when 
we quantize the denominator coefficients of a high order 
filter. It is for this reason we avoid designs with multiple 
roots in the same polynomial. Significantly reduced coeffi-
cient sensitivity is obtained by unpacking the polynomial to 
form a cascade of first and second order filters as shown in 
figure 3. A sensitivity of 102 is manageable for the roots of a 
second order polynomial separated by 10-2.  
         In a similar vein, the gain between input and internal 
states of an IIR low-pass filter as shown in (3), is seen to be 
the inverse of the product of the distance from each pole in 
the polynomial to the Z=1 test point on the unit circle. For 
the 5-pole example, this gain is seen to on the order of 1010 

which represents approximately 33 bits of word growth. 
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     To control the undesired attributes of an IIR filter, coeffi-
cient sensitivity and large processing gain, we unpack the 
denominator polynomial and implement IIR filters as a cas-
cade of first and second order sub-filters with gain scaling 
between stages. This unpacking is shown in figure 2. 
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Figure 2. Unpacking A Single Stage 5-th Order Filter into a 
Cascade of First and Second Order Filters. 
 
We now examine the sensitivity of root locations of a second 
order polynomial to quantization of its two coefficients. In 
(4) we show the polynomial formed from its factored form 
with roots x ± jy. 
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Equation 5 shows us the standard representation of a second 
order polynomial.  
  
                        2

1 2( )p z z a z a= + +                                  (5) 
 
Equating corresponding terms from (4) and (5) we determine 
how the roots of the polynomial are related to its coefficients. 
This relationship is shown in (6). 
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           (6) 

 
The relationship of (6) describes the locus of the root loca-
tions directly from the coefficients. Examining the locus of-
fers insight into the coefficient sensitivity. Referring to figure 
3, we see that the roots lie at the intersection of the line x = -
a1/2 and the arc of radius

2a . We can see that when the roots 
are very close, the distance -a1/2, and the radii 

2a are nearly 
the same size and that the arc and the line are separated by a 
small angle and in the perspective of linear algebra represent 
an ill conditioned geometry. The intersection of the line and 
arc for low bandwidth filters will be difficult to control when 

the coefficients a1 and a2 are quantized. This is demonstrated 
in figure 4 which identifies the possible root locations due to 
quantized line-arc intersections for 8-bit a1 and a2 coeffi-
cients. Notice the sparseness of roots in the region near Z=1, 
corresponding to low bandwidth low pass filters.  
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Figure 3. Locus of Roots, Second Order Polynomial with 
                                    Real Coefficients 
 

 
Figure 4. Possible Roots of Second Order Polynomial with  
                      8-bit Quantized Real Coefficients.  
 
The traditional response to the requirement to place roots in 
this sparse region is to reduce the size of the region by in-
creasing the number of bits used to represent the filter coeffi-
cients.  Another approach is to limit filters to a cascade of 
first order polynomials. This requires the use of complex 
coefficients to realize complex roots. The structure of the 
single complex pole filter, recognized as the normal filter, is 
shown in figure 5.  
        The root location for a first order polynomial is the 
negative of the complex coefficient. Since the real and 
imaginary components of the coefficient lie on orthogonal 
Cartesian coordinates, the quantized root grid coincides with 
the same grid. This is demonstrated in figure 6 which shows 
the root locations for 7-bit Real and Imaginary coefficients. 
Notice the uniformity of root distribution enable filters in the 
region corresponding to low bandwidth low pass filters. The 
penalty we pay for using the complex coefficient filter is that 
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it takes 4-multiplies to form the single pole. Incidentally, the 
conjugate pole does not have to be formed in a second filter 
since we can obtain the real output sequence as the scaled 
imaginary component, via its residue, of the single pole fil-
ter. Thus the complex feedback coefficient forms both roots 
at a cost of 2-multiplies per root. 
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Figure 5. First-Order Complex Root from First Order  
                 Polynomial with Complex Coefficient 
 
 

 
Figure 6. Possible Roots of First Order Polynomial with 7-bit 
Quantized Complex Coefficient. 
 

2. ALTERNATE FILTER ARCHITECTURE 
 
Rather than change the filter structure to the normal form to 
enable access to a uniform Cartesian grid in the formerly 
sparse region near DC we propose an alternate option which 
relocates the roots to the region near the quarter sample rate 
which already exhibits a Cartesian grid. In this structure, 
rather than design a low pass filter with the desired band-
width at DC, we design a real narrowband filter with the 
same bandwidth centered at the ± quarter sample rate. We up 
convert the input spectra from DC to the quarter sample rate, 

filter the complex series with a pair of these filters, and then 
down convert the filtered series back to baseband. This struc-
ture is shown in figure 7 for the very efficient two-path poly-
phase all-pass filter. Here 5-multiplies form 5-poles and 5-
zeros and again in the band pass 10-poles and 10-zeros. 
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Figure 7. Block Diagram and Root Location for Low Pass 
Prototype and Quarter Sample Rate Band Pass Filters 
   
The first thing we note is that the up and down conversions, 
by the complex terms exp(±j n π/2), at the input and output 
of the band pass filter are trivial and at most are performed 
with sign changes and zero insertions. Note that the real part 
and imaginary parts of the input product is performed by the 
repeated sequences [1 0 -1 0] and [0 1 0 -1] respectively. 
This has an interesting interaction with the band pass filter 
which we now address. 
        Examining the filter, we note that the filter structure for 
the low pass filter is the same as for the band pass filter. The 
filters differ primarily in zero-packing, replacing the poly-
nomial in Z by a polynomial in -Z2; a special case of the low-
pass to band-pass transformation. The denominators for the 
low pass and band pass filters shown in figure 7 are shown in 
table 1.  
 

Table 1. Denominators for Low Pass and Band Pass Filters 
H0(Z) Z2   -1.941047 Z  + 0.942547 
G1(Z) Z   - 0.961481 
H1(Z) Z2   -1.978362 Z  + 0.979889 
H0(-Z2) Z4  + 1.882559 Z2  + 0.888380 
G1(-Z2) Z2  + 0.924390 
H1(-Z2) Z4  + 1.954166 Z2  + 0.960208 

 
Since the polynomial has been zero packed, the filter regis-
ters present two delays between successive filter taps. Exam-
ining the two series formed by the input cosine sine hetero-
dynes we note the non zero samples of the two series pre-
sented to the In-phase and Quadrature-phase versions of the 
filter are offset by one sample. Since the filter registers are 
two samples wide, one filter register at a given instant con-
tains the sequence [0  -d(n-2)  0  d(n)] while the other con-
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tains the sequence  [-d(n-3)  0  d(n-1)  0]. We come to the 
conclusion that the two filter registers can be interleaved so 
that only a single filter is required to process the I-Q data 
formed by the input up-converter. The input to this filter is 
seen to be the interleaved sequence [I(n),  j*Q(n+1), –I(n+2), 
–j*Q(n+2), ….]. The output heterodyne that basebands the 
filter output accesses the real and imaginary output samples 
from successive samples of the single filter. This interleaving 
and de-interleaving at the input and output of the quarter 
sample frequency band pass filter is shown in figure 8.     
                   

  

H (-Z  )0

H (-Z  )0

H (-Z  )1

H (-Z  )1

G (-Z  )1

G (-Z  )1

2

2

2

2

2

2

[1 0 -1 0]

[1 1 -1 -1]

[1 0 -1 0]

[1 -1 -1 1]

[0 1 0 -1] [0 -1 0 1]

-

-

Interleaved I-Q de-Interleaved I-Q

 
Figure 8. Interleaving at Input and Output of Single Quarter-
Sample Rate Band Pass Filter. 
 

3. COEFFICIENT SENSITIVITY of 
ALTERNATE ARCHITECTURE 

 
Figure 9 presents the pole-zero diagrams of the prototype 
low pass filter and of the quarter sample rate band pass filter. 
Also shown is the spectral response of the two filters exclu-
sive of the input and output heterodynes associated with the 
band pass filter. The heterodyned version of the band pass 
filter will be seen to have a spectral component at DC and 
one at fs/2. The output of the heterodyned filter will require a 
low pass filter with wide transition band to suppress the fs/2 
band. This filter will be seen to only require one multiply. 
We will examine the time and frequency response of the sys-
tem shortly.  
        We now continue with the verification that the alternate 
architecture is significantly less sensitive to coefficient quan-
tization than is the prototype low pass filter. Figure 10 shows 
the root migration of the second order polynomials describ-
ing the low pass prototype filter and of the quarter sample 
rate band pass filter for a range of coefficient quantization 
spanning 24 bits to 10 bits. A root of the low pass prototype 
filter migrated to the unit circle at 10-bit quantization hence 
was not included in the figure. Note the remarkably small 
amount of root migration for the quarter sample rate band 
pass filter compared to that of the low pass prototype. Simi-
lar behavior is observed for quantized coefficients of the 

standard bi-quadratic form of the low pass and band pass 
filter structures.   

 
Figure 9. Root Locations of Low pass Filter and of Quarter-

Sample Rate Band Pass Filter   

 

 
Figure 10. Roots of Low Pass Prototype and Quarter Sample 

Rate Band Pass Filter, Second Order Polynomial Coeffi-
cients Quantized 24-Bits to 10-Bits 
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Figure 11 shows the impulse response of the In-phase and 
Quadrature components of the up-converted time series as 
well as the down-converted output time series and its spec-
tral response. Note the replica spectral response at the half 
sample rate which is still to be suppressed by a clean-up low 
pass filter. Consistent with the replica spectrum, the real 
impulse response of the filter has alternate sample values 
equal to zero as if it had been zero-packed. 
        Figure 12 shows the impulse response of a prototype 
low pass filter, of the down converted band pass filter, and 
of the low pass filtered version of the down converted filter. 
Also shown are their corresponding spectra.   

 
Figure 11. Impulse Response of the In-Phase and Quadra-
ture-Phase Components of the Up-Converted Time Series 
and the Down-Converted Output Time Series and Spectrum 
 

4. REVIEW AND CONCLUSIONS 
 
We have reviewed the difficulty we encounter when operat-
ing a recursive filter at very high ratios of sample rate to 
bandwidth. The problem is due to shift of pole positions in 
response to coefficient quantization. The shift is greater 
when there are a large number of roots in the filter polyno-
mial. Good design practices have us decouple roots by plac-
ing them in different polynomials implemented in distinct 
sub-filters. Similar considerations show that the numerical 
gain of a filter is proportional to the ratio of sample rate to 
filter bandwidth. This gain had to be scaled out of the filter 
and good design strategies dictate that the scaling be distrib-
uted over multiple small filters to avoid having to deal with 
very wide words in the processing stream.  
      We reviewed the finite arithmetic effects of first and sec-
ond order sub-filters. We reminded the reader that the inter-
action between the two coefficients of a second order poly-
nomial leads to an ill conditioned coupling when the recur-
sive filter is designed for low bandwidth near zero frequency. 
The conditioning is worse for closely spaced poles near DC 
and the conditioning is best for widely spaced poles centered 
at the quarter sample rate.  

 
Figure 12. Impulse Responses; Prototype Low Pass, Down 
Converted Band Pass, and Low Pass Filtered Version of the 
Down Converted Filter and Associated Spectra.   
 
      Following this lead, we designed real coefficient band 
pass filters with the desired bandwidth centered at the quarter 
sample rate. We noted that the translated filter has essentially 
the same structure as the low pass filter except that the poly-
nomials are zero packed with each Z replaced with –Z2, a 
default version of the low-pass to band pass transformation. 
To access the bandwidth of the offset filter we heterodyned 
the input signal to the quarter sample rate. We observed that 
the interleaved I and Q components of the up converted time 
series meshed perfectly with zero-packed impulse response 
and register structure of the band pass filter so that the I and 
Q components could be interleaved in the same filter. Thus 
there is no second filter required to process the complex up-
converted time series! This is a very efficient method of im-
plementing narrow bandwidth low pass filters. This method 
requires a clean up filter to finish the process.  
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