

THE MYTHS OF CODE PORTABILITY

Chad Epifanio (Xilinx, San Jose, CA;
chad.epifanio@xilinx.com)

Manuel Uhm (Xilinx, San Jose, CA;
manuel.uhm@xilinx.com)

ABSTRACT

Code portability, or, more generally, code reuse, is a long-
standing technique to reduce system development costs. It
forms a key tenet of JTRS and other transformational
defense programs. However, a number of ancillary
assumptions must be met in order to reap significant cost
reduction. Improper reuse may actually have the undesired
effect of increasing development costs. In this paper we
explore the myths and realities of code portability. We
discuss the assumptions that must be true in order for reuse
to succeed, and contrast that with the realities that we
observe in the field. Many problems derive from the fact
that the developer and reuser may reside in different, often
competitive organizations. While the burdens of designing
for reuse are borne by the developer, the benefits accrue to
the reuser. The focus will be on FPGA code, as both the
difficulty and the need for portability are arguably greater
than for GPP/DSP code, though the general concepts
presented are applicable to all.

1. INTRODUCTION

Code portability is a key tenant of defense transformational
defense programs such as JTRS. The goal is to reduce
development costs, reduce risk, and accelerate time-to-
market. However, experience has shown that achieving the
projected benefits is not easy, especially when dealing with
FPGAs. In fact, improper code reuse can actually increase
development costs. In this paper we describe some of the
pitfalls in the chase for code portability.

To frame further discussion, we must first define what is
meant by "portable code". In its most general sense,
portable code is code that can be reused in another project.
This in and of itself is not quite sufficient, as there are
multiple levels of code reuse. At a basic level there is
function reuse. This is fairly easy to achieve, as functions
are small, coherent units that are easily tested and verified.

In the context of FPGAs, we consider low level IP cores,
such as FFTs or FIRs, to be equivalent to a software
function in terms of reuse. Component or object reuse
provides greater benefit than function reuse, in that they are
aggregations of functions and perform more complex tasks.
They are also more difficult to test and verify under all
expected operating conditions. Porting problems can be
localized fairly accurately. FPGA IP such as Forward Error
Correction cores like Turbo coders or LDPC can be
classified in this category. At the highest level, full design
reuse provides the greatest benefit, but is also the most
difficult to attain. One reason is that it is difficult to test and
verify the design over all anticipated operating conditions
and deployment platforms. Porting problems can be very
difficult to diagnose and repair, as they may be the result of
subtle interactions between components that did not appear
in the original host platform. An example of a full design
could be a complete application, such as a waveform. The
range of code reuse is illustrated in Figure 1.

Figure 1: The range of code reuse

Some defense programs attempt to go even further by trying
to leverage full design reuse across separate companies.
This is a very difficult task, for, as will be shown later,
reuse even within a company is often not successful. To be
clear, this paper is not an attempt to dismiss reuse as
ineffective. Instead, we attempt to show that focusing solely
on code reuse will not achieve the reductions in cost, risk,
and schedule that are desired.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

2. REALITIES OF PORTABILITY

The goal of any reuse effort should be cost reduction, where
for simplicity we assume that other factors such as risk and
schedule can be reflected as a type of cost. Therefore, if
whatever we are doing does not result in cost reduction,
then it does not help achieve this objective. One might
question how reuse could not result in cost reduction, but
consider this: "reusing code" is not the same as "reusable
code". Reuse is not free. It takes extra effort up front to
properly design code that can be reused by a different
developer, perhaps even in another company. The code
must be generalized and thoroughly tested over all
anticipated operating conditions. It must be fully
documented, and eventually supported and maintained.

Code reuse within a company makes sense, since the
company will benefit in the future from extra effort spent
today on developing reusable code. What is not clear is how
well reuse will work across companies, especially
companies who may be in open competition. The problem is
that the burden is distributed unequally - the extra cost is
borne by the developer, while the benefits accrue to the
reuser. Where is the incentive for the developer? Developer
altruism cannot be the basis of successful reuse. There must
be some carrot, in the form of a profit-driven business
model, or some stick, in the form of enforceable portability
standards and requirements.

In order to effectively reuse code, there must be a
foundation of confidence. Blind reuse with no visibility into
the development process is rarely successful. The reuser
must have confidence that the code not only behaves as
advertised, but will behave the same on the reuser's chosen
platform. The way to build this confidence is to provide the
reuser with all the artifacts that went into the development
of the code. These include high and low level specifications,
trade studies, models, fixed-point simulations, and test
vectors. The reuser must be able to verify that the
requirements and use cases are the same and identify areas
where they are not. The fixed-point models are needed
because there are no standard word sizes in FPGAs like
there are in DSP/GPP. 18-bit multipliers are the most
common, but 9-bit and 25-bit are also available. Unlike
DSPs, where the computational engines more or less look
the same due to convergent evolution, FPGA multipliers are
fairly different across devices and vendors. The test vectors
must completely cover the operating space. All systems
work great when there is no noise, multipath, or
interference. The real test of a radio is behavior at the
extreme.

Good documentation is vital to successful reuse. The level
of granularity is important; each coherent functional unit in

the design should have documentation and test vectors.
When trying to port large designs between disparate
platforms, the reuser is almost assured to encounter
anomalous behavior. Without functional unit descriptions
and test vectors, the reuser has no choice but to start a
tedious, and expensive, reverse engineering effort. The
reuser must first identify what the code currently does, then
try to infer what it was intended to do. From there, the
reuser must forward engineer a solution. This is where blind
reuse without good documentation can actually end up
being more expensive than designing it from scratch from
base principles.

We want to stress at this point that the final deployed
executable code cannot be used as a means of specifying
system behavior. By executable code, we mean code that is
intended to be deployed in the final system. The executable
code is an instance of a waveform, not the definition of it, as
it always has some amount of platform-specific detail. For
example, it may have a software-hardware (as in FPGA)
partitioning that may not be able to be supported by the
reuser's platform. The ultimate definition of the waveform
must be the top level specifications. Unfortunately, many
military waveforms have specifications that are woefully
inadequate such that two independent waveform developers
cannot build two independent systems and have any hope of
them actually intercommunicating. This may be due in part
to the acquisition process, where development of a
waveform is typically awarded to a single company,
sometimes on the basis of a science project that has not been
project managed to support code reuse.
Commercial telecommunications waveforms, on the other
hand, are typically far more and better specified since there
are multiple companies involved in the process, each of
which need to be able to build equipment that can
interoperate. This allows anybody to develop compliant
radios and compete on the open market.

Portable code could be seen as a possible mitigating factor
for the general poor quality of some waveform
specifications. However, is it possible to create truly
portable FPGA code? There have been some successes in
the past, but it really depends on the system requirements.
Device size, implementation cost, and power consumption
requirements very often force the developer to use platform-
specific optimizations. This is especially common in small
form factor and handset radios that rely on batteries.
Because of the rapid evolution of FPGA technology, and the
divergence of platform-specific hardware features,
development tools currently are not able to abstract the
hardware as efficiently as modern C++ compilers.
Optimizations have to be instantiated at a low level, akin to
inline assembly programming in the software world. In
these cases, the executable code is a poor vehicle for reuse.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Let us take a step back and discuss what it is we are trying
to do. The key goal is to reduce development costs. By
focusing on portability and reuse, we are implicitly stating
that the act of coding is the most expensive part of a product
development program. In our experience, this is not the
case. If the specification is clear, the architecture sound, the
fixed-point analysis complete, the act of coding is relatively
straightforward. One must not confuse "programming" with
"coding": the former is the structured logical design process
that specifies the behavior of the system, while "coding" is
the act of casting it into the language of choice. Most
problems occur when the two are intermingled, resulting in
persistent, expensive rework.

The subtle point about trying to achieve reuse across
company boundaries is that reuse of knowledge, not the raw
code, is often the most important factor in success. It is far
more important to clearly convey the nature of the design
than it is to provide the implementation of the design itself.
Certainly providing the implementation along with the
design helps to clarify areas of potential confusion. But we
believe it would be far more effective if a reference
implementation was provided instead of the final deployable
executable code. A reference implementation is designed
for clarity and conveyance of information, not for real-time
implementation in the final platform. This is common in the
commercial telecommunications sector, where a fixed-point
implementation is provided along with the specification.
There are many ways to put the reference design together -
fixed-point C++, MATLAB m-code, Simulink, UML, etc.
We have no strong opinions on the matter, other than some
platform-independent reference model must be provided by
the waveform developer.

Integration and testing is often an unexpectedly large
fraction of the development effort, and thus the
development cost. Reuse might be seen as a way to reduce
the testing burden, since the original design was
(presumably) proven to work correctly. This works well in
the GNU open-source community, for example. There are
two important differences for FPGA designs. First, general-
purpose processors (GPP) are fairly similar, relatively
speaking, and the tools are more mature. As we have said
previous, this is not the case for FPGAs. Second, and more
importantly, application software depends on an underlying
operating system that abstracts much of the details of the
underlying hardware. It is because of this abstraction that
one can write code that will run on, say, an Intel and a
Freescale processor. At present, there is no equivalent to an
operating system on an FPGA, and so a means of
abstracting the hardware is primitive compared to GPPs. On
the other hand, it is well known that there is often a very
significant level of rework needed when porting an

operating system itself between processors. Why should we
expect that a similar level of rework would not occur when
porting waveforms on FPGAs?

In order to reduce the costs of integration and testing, we
are back to stressing the need for documentation and test
vectors. The best way to reduce costs is to insure that the
integration/test engineers know exactly what it is the system
should do at every significant test point in the system

3. KEYS TO SUCCESS

Thus far we have presented common flaws in code
portability. Since portability and reuse is not a new issue,
one should be able to look at past projects and extract
lessons learned. Unfortunately, there are not many cases
where wide scale reuse occurs between companies. What
we can do is look at recent studies on code reuse within a
single company. This is a far easier problem than reuse
between companies, and should be viewed as an overly
optimistic look at the problem. Unfortunately, failure is
more common than one would wish. Even in a large study
that pre-filtered down to a small subset of companies most
likely to have successful reuse, the failure rate was a
depressing 33% [1]. Failure is loosely defined, but generally
refers to software not being reused, and/or development
costs not reduced.

One interesting fact that stands out is that there is no
technological solution to the problem. Reuse success is not
affected by choice of language, middleware, computer-
assisted software engineering (CASE) tools, and so on [2].
In other words, there is no short-cut. Furthermore, while the
creation of a repository was shown to be useful, in and of
itself, it is not sufficient to insure success.

The overriding prerequisite for a successful reuse program
is commitment from upper management. Without this, few
if any company reuse programs have been successful.
Extending this to an entire program implies that both the
management of the waveform development and the program
oversight management have to be committed to the process.
This means that there must be some way to incentivize or
reward development of reusable designs (note we
purposefully say "design", not "code"), and/or punish
development with poor reuse potential.

An additional factor in successful reuse programs is the
reuse of high-level software artifacts [3]. This includes such
things as high- and low-level designs, simulations, models,
and test vectors. This is in line with the position we have
laid out above. Another factor to success is the introduction
of a common process that specifies how reuse activities are
to be done. It is interesting that there is little commonality in

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

the process itself - every company had their own
methodology. The key factor appears to be that a common
process is created and forced upon all users.

The last key factor in success is a rather nebulous "human
factor" [4]. This refers to behavioral aspects of the people
involved in the reuse program, the level of training, the
amount of motivation, and so forth. Failing to account for
the human factors often led to failure in the reuse program

4. MOVING FORWARD

In order to propagate code reuse, the necessary
preconditions for success must be put in place. The above
key success factors are certainly a means to this end.
However, even these are insufficient in the absence of a
business model that rewards and enforces code reuse. This
means that in the context of an entire defense program, a
business model must be put in place such that code reuse
can be supported between companies. The commercial
telecommunications industry has been able to put a model in
place that involves relatively open specification and
ratification whereby competing companies are incented to
keep each other honest. Beyond that, an entire industry has
been built upon cross-licensing of key and valuable IP that
can enable advances in waveform development. This
incentivizes companies to continue to invest in R&D not
only to capture more value via competitive advantage, but
also in order to be able to successfully engage in cross-
licensing, since it is virtually impossible that a single
company could single-handedly develop an all new method
of communications. In order for an entire defense program
to successfully be able to leverage code reuse, the
acquisition strategy must put in place such a business model
that supports code reuse.

3. CONCLUSION

In this paper we have made the case that achieving
waveform code portability requires more than a focus on the
code itself. In a real sense, knowledge must be transferred
between the company that develops the waveform and the
company that reuses the design. Final executable code is not
a good vehicle for this knowledge reuse. It requires good,
thorough documentation, trade studies, models, simulations,
fixed-point analysis, and comprehensive test vectors.
Equally important is the creation of a viable business model
to encourage the development of reusable code and
artifacts. There is no technological solution to the reuse
problem. It requires a common process, strong oversight,
and a means of verifying proper design practices.

[1] M. Morisio, M. Ezran, and C. Tully, "Success and Failure

Factors in Software Reuse", IEEE Trans on Software Eng,
Vol. 28, No. 4, pp 340-57. 2002.

[2] W. Frakes and C. Fox, "Quality Improvement Using a
Software Reuse Failures Model", IEEE Trans on Software
Eng, Vol. 23, No. 4, pp275-79. 1996.

[3] D. Rine and R. Sonneman, "Investments in Reusable
Software: A Study of Software Reuse Investment Success
Factors", J. Systems and Software, Vol 41, pp17-32. 1998.

[4] M. Griss, "Software Reuse: Objects and Frameworks are Not
Enough", Object Magazine, pp77-87. 1995.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

