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ABSTRACT
Phase locked loops (PLLs) are frequently used in Software

Defined Radios (SDR) for carrier recovery and symbol timing
synchronization. Unfortunately, conventional PLLs can function
correctly only when the frequency offset remains within a
relatively small and limited range. This limited lock range is a
direct consequence of the inability of the phase detector to resolve
any phase error that lies outside a given2π range. In this paper,
we propose an extended lock range PLL that benefits from the
flexibilities offered when the design is implemented in software.
We describe and examine the FPGA implementation of a tracking
system that uses the extended range PLL to perform carrier recovery.
The proposed system is applicable to both QAM and PSK signaling
and shown to function at a relatively fast clock frequency using a
very small percentage of the resources on a Xilinx Virtex-IV FPGA.

1. INTRODUCTION

Software Defined Radios (SDR) are highly configurable
hardware platforms that provide the technology for migrat-
ing many radio functions, traditionally performed in analog
circuits, to DSP based implementations. While these im-
plementations can be performed on a number of different
silicon devices such as digital signal processors (DSPs) or
general purpose processors (GPPs), field programmable gate
arrays (FPGAs) present themselves as an attractive option for
complex processing tasks for reasons of performance, power
consumption and speed, [1].

Synchronization is one of the most important tasks that
needs to be performed for successful operation of any data
receiver. The receiver should find the exact frequency of the
carrier that is modulated by the transmit data. If modulation
is done coherently, the receiver should also synchronize
with the phase of the carrier, [2]. There are many ways to
implement carrier recovery and frequency synchronization
in a digital communication system. At the heart of all the
methods is the phase locked loop (PLL), [1].

The phase detector (PD) whose task is to find the phase
difference between the reference input and the PLL output is
the key element in the PLL. This phase detector - whether
implemented as a EXOR phase detector, a JK-flipflop detec-
tor or a Hilbert Transform detector (to name only a few) -
proves unable to resolve any phase error that lies outside a
pre-specified2π range. The phase-frequency detector (PFD)
implementation extends this range to a limit of4π, [3], but
this wider range cannot be further extended.

The ambiguity imposed by the limited range of the phase
detector output is the main reason for the limited lock range

of the PLL. However, an N-fold increase in the lock range
would be possible if one could extend the latter range to
−Nπ to Nπ. This is exactly what we strive to achieve in
this paper. We propose a method to extend the lock range of
the conventional PLLs byunwrappingthe phase of the PD.
The termwrappingrefers to the fact that when a phase angle
cycles through a range that goes beyond the pre-specified
base range, it wraps back to a point within the range. For
example, if the base range is−π to +π, any phase angle
outside this range is brought back to the range by adding
or subtracting as many multiples of2π as required to go
back to[−π, π]. When the PLL is implemented in traditional
analog circuits, the phase detector has no memory and thus
automatically generates phase angles that are within a base
range, [2].

To illustrate the operation of our extended-range PLL, we
develop a complete carrier acquisition and tracking system
that is applicable to both QAM and PSK modulated signals.
This system takes the demodulated received signal as input
and presents, through a series of multi-stage filtering a
noise free sine wave to the PLL. The output of the PLL
is interpolated and then multiplied by the input signal to
compensate for the carrier offset.

The implementation of the system using a recent system
level design tool from Xilinx Inc. called System Generator
for DSP is presented. Design decisions such as usage of
polyphase structures andcoordinate rotation digital computer
(CORDIC) arithmetic are made to optimize for space and
clock rate.

We begin by introducing the theory governing our
extended-range PLL in Section 2. Section 3 presents a de-
tailed analysis of the PLL based carrier recovery system. We
discuss the FPGA implementation of the system in Section
4 and, finally, draw our conclusions in Section 5.

2. PLL WITH EXTENDED LOCK RANGE

An all digital receiver is implemented using a conventional
digital phase locked loop (CPLL) such as that shown in
Figure 1.

The CPLL have three basic components: a phase detector
(PD), a loop filter and a voltage controlled oscillator (VCO).
The phase detector measures the difference between the
phase of the local oscillator and the input carrierθ[n]. This
phase error,ε[n], is fed into the loop filterL(z) whose
specifications are chosen to track changes in both carrier
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Fig. 1. Linear model of discrete PLL

frequency and phase offset. The output ofL(z), c[n], controls
the phase angleφ[n], output of the VCO.

The CPLL is kept in its lock range as long asε[n] remains
within the [−π, π] range. This phase ambiguity caused by
the PD limits the locking capabilities of the PLL. Herein,
we propose a PLL with an extended lock range. We will
refer to the new PLL as EPLL. The EPLL has the same
building blocks as the CPLL above. The key element that
differentiates the EPLL from the CPLL is the phase detector.
To increase the lock range, the PD in the EPLL is equipped
with a phase unwrapping mechanism.

A. Phase unwrapping mechanism

To illustrate the operation of the PD with the phase
unwrapping mechanism, we first assume that the input to
the EPLL is a complex-valued sinusoidal signalη[n] of the
form:

η[n] = aejθ[n] + ψ[n], (1)

whereψ[n] is an additive noise,θ[n] = 2π∆fcn + θ0 and
∆fc is a carrier frequency offset.

As will be demonstrated in the next section, such complex
sinusoidal signal can be obtained from the received signal
through a demodulation process. The PLL strives to find and
track the variations ofθ[n].

The block diagram of the proposed EPLL is shown in
Figure 2. The inputs to the PD are now the noisy complex-
valued sine-waveη[n], and the synthesized sine-waveejφ[n]

fed back from the loop filter. The PD is designed to deliver
an estimate of the phase differenceε[n] = θ[n] − φ[n].

μz−1

1 − z−1

ε[n]

Fig. 2. PLL with extended lock range

The PD, usually implemented as anarctan function, wraps
the phase estimateε[n] to a pre-specified2π range. We over-
come this limitation by appending an unwrapping mechanism
to the PD to reverse the effect of wrapping. To this end, we
make the reasonable assumption thatε[n] varies slowly and
proceed to examine the incremental values|ε[n]− ε[n− 1]|.
This ability of using memory to saveε[n − 1] and thus
track the signal variation is a key element in the successful
operation of our EPLL.

The unwrapping mechanism performs the exact opposite
function as wrapping. When a new phase estimateε[n]
is output from the PD, the unwrapper compares it to the
previous estimateε[n − 1]. The incremental value is then
used to decide on whether wrapping has been done and
consequently reverse its effect. For example, ifε[n] = π/4
and ε[n − 1] = 2π − π/8, clearly, ε[n] has been wrapped,
and the unwrapper will have to unwrap it by adding2π, to
obtain the unwrappedε[n] equal to2π + π/8.

Keeping track of the incremental phase values and adding
proper multiples of2π to ε[n] thus allow us to unwrap the
phase estimate of the PD and consequently increase the lock
range of the PLL. The unwrapping mechanism is based on
the simple update equation:

ε[n] = ε[n] + 2π × round

(
ε[n− 1] − ε[n]

2π

)
(2)

This unwrapping scheme is very easy to implement in
software defined PLLs and unwrapping can be done to any
range[−Nπ,Nπ] one finds suitable.

After unwrapping, the phase estimate is fed into the loop
filter. The parameters of the loop filter depend on the design
specifications and follow directly from the analysis of the
CPLL, for details see [2] or [3].

Note that when the frequency offset is non-zero, the
unwrapped outputφ[n] may grow indefinitely. To avoid this
problem, one needs to wrapφ[n] to [−π, π] before feeding
it back to the PD.

3. CARRIER ACQUISITION AND TRACKING SYSTEM

To illustrate the operation of the EPLL, we present a case
study of a non-data aided carrier acquisition and tracking
system applicable to QAM and PSK modulated signals. The
system, shown in Figure 3, takes the demodulated received
signal y[n] as input and outputs the carrier compensated
signaly′[n].

The system can be divided into three parts: (i) Front-end
processing to remove the data dependency of the input signal,
(ii) EPLL to track the variation of the phase/frequency offset,
and (iii) Interpolator and phase compensator to produce the
desired output.

A. Front-end processing

Ignoring the channel noise, the demodulated QAM input
signaly[n] finds the following form, [2]:

y[n] = (xR[n] + jxI [n])ejθ[n] (3)
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Fig. 3. Block diagram of a fine carrier acquisition and tracking procedure for QAM systems

wherexR[n] andxI [n] are respectively the real and imagi-
nary parts of the complex baseband signal, andθ[n] is the
phase difference between the modulated received signal and
a locally generated carrier at the receiver. Assuming a carrier
frequency offset∆fc and a phase offsetθ0, we get

θ[n] = 2π∆fcn+ θ0. (4)

The PLL has to estimateθ[n] and remove the undesirable
factor ejθ[n] from the right-hand side of (3).

The unknown complex factorxR[n] + jxI [n] causes a
phase ambiguity that does not allow direct estimation ofθ[n]
from y[n]. This problem is resolved by taking the fourth
power of y[n]. The output of the(·)4 block in Figure 3 is
obtained as, [2],

y4[n] = my4e
j4θ[n] + v[n]ej4θ[n] (5)

wheremy4 = avg[x4
R[n] + x4

I [n]− 6x2
R[n]x2

I [n]] andv[n] is
a zero-mean wideband signal.

Recalling (4), equation (5) shows thaty4[n] is the sum of
a complex-valued sine-wave with frequency4∆fc and phase
4θ0 - the parameters that the PLL strives to estimate - and a
wideband signal,v(t)ej4θ[n], that may be treated as noise.

Note that since for M-PSK signals, the fourth power rule
cannot be applied, a power of M block is used instead. The
rest of the system remains unaltered. Here, for the sake of
demonstration, we assume the input is a QAM signal.

Direct application of the output of(·)4 block to the PLL
does not lead to a satisfactory result, because proper operation
of the EPLL requires a relatively clean sine-wave. One can
obtain a cleaner (less noisy) version of the desired sine-
wave, by passingy4[n] through a low-pass filterG1(z). After
low-pass filtering, the result is decimated to save on the
computational complexity.

Depending on the quality of the channel, the output of the
low pass filter and decimator may still be noisy and thus

could not be used as an input to the EPLL. To furtherclean
the input signal to the PLL, one may use another stage of
filtering: a bandpass adaptive filterG2(z) that is designed to
automatically tune itself to the desired tone at4∆fc.

The filter parameters that are used in the front-end pro-
cessing should be chosen with special care. The passband
edge ofG1(z) is selected according to the frequency offset
∆fc. If the frequency offset is such that|∆fc| < ∆fmax,
the passband edgefpb is selected equal to4∆fmax.

The proper operation of the line enhancerG2(z) requires
the input to be a narrow-band signal burried in a wide-band
noise. In order to ensure the presence of the wide-band noise,
the stop-band edgefsb of the low-pass filterG1(z) and the
decimation rateM2 are chosen such that the signal spectra
over the transition band and the aliased spectra add up to a
flat spectra. This dictates the following relationship between
fpb, fsb , M2 and the input sampling ratefs1.

fpb + fsb

2
=

fs1

2M2
(6)

Note that the adaptive line enhancerG2(z) that we use
here is an FIR-LMS adaptive filter. The spectra of the signals
before filtering, afterG1(z) and afterG2(z) are presented in
Figure 4. One can clearly see the gradual enhancement in
the quality of the signal that will eventually be fed into the
EPLL.

B. EPLL

We follow the EPLL presented in Section 2. To be able to
compensate for both carrier frequency and phase offset, we
choose a second order PLL, [3]. The parameters of the loop
filter of the EPLL are selected according to the sampling rate
at the input of the phase detector, the noise bandwidth and the
damping factor. These computations, as mentioned earlier,
follow directly from the analysis of digital CPLLs,( [2], [3]).
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Fig. 4. The power spectrum ofy4[n] (a) before filtering, (b) after low pass filtering and decimation, (c) after the line enhancer

The EPLL strives to track the time-varying phase angle
4θ[n]. Since the desired phase that should be removed from
the demodulated signal isθ[n], the output of the PLL is
divided by4 before any further processing. This divide-by-4
block is shown in Figure 3. Note that the factor of4 can
alternatively be compensated for inside the EPLL. For this
purpose, we include a factor of14 in the transfer function of
the loop filter, to effectively generate a phase output equal to
φ[n]/4, and feed backej4φ[n−1] to the PD instead ofejφ[n−1].

C. Interpolator and phase compensator

The output of the EPLL is an estimate of theM2-fold
decimated phase error iny[n − ∆] where ∆ is the delay
caused by the low-pass filterG1(z), the adaptive filterG2(z)
and the EPLL. This delay is evaluated asNg1/2 whereNg1

is the length ofG1(z). The line enhancer does not cause any
delay, since its output is an estimate of the input. Similarly,
the EPLL does not cause a delay, since upon convergence,
the outputφ[n] is equal toυ[n].

The samples ofθ[n], output of the PLL (φ[n] = θ[nM ]),
need to be interpolated to the original sampling ratefs1.
There are many methods to carry out this interpolation. Here,
we choose to use the simple linear interpolation method
assuming thatφ[n] is a piece-wise linear phase.

After interpolation, the samples ofθ[n], now at the same
rate as the demodulated signaly[n], are converted into the
phase compensation factore−jθ[n]. This factor is finally
multiplied by the delayed signaly[n−∆] to yield the desired

outputy′[n] of the carrier recovery system:

y′[n] = y[n− ∆]e−jθ[n]. (7)

4. FPGA IMPLEMENTATION

In this section, we present the hardware architecture of a
4-QAM carrier recovery system based on the EPLL struc-
ture. The System Generator implementation of the designed
system is shown in Figure 5.

System Generator, an add-on to Simulink provided by
Xilinx, produces a highly optimized FPGA realization since
each module used in the architecture maps to an FPGA
library component that has been carefully constructed and
optimized for the FPGA target device. Moreover, the System
Generator provides us with a visual representation of the
system that not only serves as the design specification, but
as the behavioral simulation model and the source definition
for the hardware. The system Generator implementation also
facilitates the rapid investigation of various design options in
the system. The various parameters used in the data flow are
specified as variables in the MATLAB Workspace, [1], [4].

The system was synthesized for a XILINX VIRTEX-IV
XC4VSX35 FPGA. DSP48 slices were used to measure the
resources utilization of the FPGA. Throughout the circuit,
signals were represented using 16 bit vectors, 10-12 bits were
used to represent the fractional part of the numbers depending
on the growth incurred in each block as the signals propagate.
The carrier recovery system occupies 3 out of 192 DSP48
slices available on the FPGA chip and can run at a maximum
clock frequency of 20 MHz.
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Fig. 5. The carrier acquisition system in system generator for DSP

A. Front-end implementation

The front-end processing begins by two stages of complex
multiplication to raise the input signal to the power of four.
Each complex multiplication block is implemented using
adders/subtractors to save on the amount of resources used,
[5].

For the low pass filter and the decimation, we use a
polyphase filter structure to reduce the complexity of the
implementation. Two polyphase low-pass filters are required
here, one for each of the I and Q processing arms. These
filters are 125-tap symmetrical FIR filters with 10 bits
coefficients and support 16-bit precision input samples. The
filters were generated using the Xilinx Core generator MAC-
FIR block, [6]. The implementation of each filter occupied 1
DSP48 slice.

The line enhancer was not implemented for this particular
presentation. This can be justified by the fact that we are
implementing a QPSK carrier recovery system. If we were
to implement a higher order QAM modulation, this adaptive
LMS filter is required.

B. EPLL implementation

The extended lock range PLL implementation is shown
in Figure 6. This implementation begins by extracting the
phase of the filtered baseband signal through anarctan(I,Q)
computation.

There are many options for computing arc-tangents, one
alternative that is suited to an FPGA implementation is
the coordinate rotation digital computer(CORDIC) arith-
metic [7]. The CORDIC algorithm is highly suitable for
FPGA designs because it consists of a series of additions and
subtractions, these functions are very efficiently implemented
by FPGA technology and require a small number of logic
slices, [8].

The CORDIC algorithm converges only for input angles
in the interval [−π/2, π/2]. In order to support the full
range [−π, π], a coarse angle rotation is first performed
to map the input arguments into quadrant 1, the CORDIC
algorithm micro-rotations are then performed and finally a
quadrant correction is applied to account for the coarse angle
rotation, [1].
The number of fine-angle iterations required to carry the arc-
tan operation and the bit precisions of the CORDIC elements
are investigated through simulation. The phase detector we
used was implemented using 4 iterations and 16 bit signal
precision.

To unwrap the output of the phase detector, the angle
output of the CORDICarctanblock is compared to the output
of the EPLL. This differenceε[n] = 4 × θ[n] − 4 × φ[n],
along with the previous phase estimateε[n−1] are fed to an
unwrappingblock where proper multiples of2π are added
to ε[n] depending on the incremental valueε[n − 1] − ε[n].
The unwrapping block consists of multiplexers, adders and
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Fig. 6. The EPLL in system generator for DSP

subtractors. For the sake of illustration, we unwrapped the
signal up to[−10π, 10π].

After unwrapping, the signal is fed into the PI second
order loop filter. This is implemented as two first order IIR
filters. An IIR filter of one pole and one zero followed by an
integrator.

After the loop filter, the phase iswrappedback to[−π, π]
before interpolation. This is performed by comparing each
φ[n] with π if positive and by−π if negative. If |φ[n]| > π,
2π, respectively−2π, is added to the phase output. This
wrapping mechanism is implemented using two multiplexers
and four adders/subtractors.

C. post-PLL implementation

After extracting the requiredφ[n], one needs to interpolate
the samples to recover the input sampling rate. We use linear
interpolation. The slope of successive samples of the phase
is computed and the intermediate samples are calculated
accordingly.

Correct operation of the linear interpolation requires un-
wrapping the samples of the phase output of the PLL before
computing the intermediate steps. This need to unwrap is
clear from the fact that the phaseφ[n] is assumed to be a
piece-wise linear phase.

Linear interpolation is implemented using a number of
adders/subtractors and multiplexers, an accumulator and an
upsampler whose purpose is to addM2 zeros after each input
signal to allocate space to the intermediate samples being
computed.

The interpolated phase samples are finally used to compen-
sate for the input signal. The CORDIC algorithm in rotation
mode is used here to compute the sine and cosine of the phase
θ[n]. The complex phasorcos(θ)+j sin(θ) is then multiplied
by the delayed input signal using a complex multiplication
block similar to the one used to raise the input signal to the

power of 2 (twice). This multiplication yields the final output
y′[n].

5. CONCLUSION

In this paper, we presented a method to increase the
lock range of the conventional phase locked loop. This was
made possible by the flexibilities offered when the system is
implemented in software. To illustrate the functionality of the
extended-lock range PLL (EPLL), a carrier recovery system
was designed and implemented on a XILINX VIRTEX-IV
FPGA. The implementation was done using System Gener-
ator for DSP and was optimized to occupy 3 DSP48 slices
while running at a maximum clock frequency of 20 MHz.
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