
COMMON OPERATORS DESIGN ON DYNAMICALLY RECONFIGURAB LE
HARDWARE FOR SDR SYSTEMS

Loïg GODARD, Hongzhi WANG, Christophe MOY, Pierre LERAY

IETR/Supelec-SCEE Laboratory, Campus of Rennes
{loig.godard, hongzhi.wang, christophe.moy, pierre.leray}@supelec.fr

ABSTRACT

This paper deals with common operators used to perform
multi-standard, multi-function applications. In opposition
with highly complex communication components, each
exclusively dedicated to a given standard ("Velcro"
approach), we argue that one of the key point in software
radio is the (re)use of modular operators as proposed in [1].
Those operators can adapt their behavior according to the
function to realize by parameters change. This indicates the
need to dynamically adapt systems architecture at the
hardware level. Taking into account the possibility of partial
reconfiguration offered by the FPGA [2], we can reconfigure
common operators while the rest of the design is still
running. Common operators approach also offers possibility
to use reconfiguration by difference that aims at reducing
bitstream size and then decrease the cost of the
reconfiguration in terms of memory and time allocation.

1. INTRODUCTION

Software radio basically refers to a collection of techniques
that permit the reconfiguration of communication systems
without changing any hardware part. We can see then that
one of the challenges of future generation of communication
systems is the reconfiguration of the device. This
reconfiguration may be needed at highest level of the system
as at lowest level. Highest has to be understood here like a
complete reconfiguration of a system (for a standard change
for example). Lowest level represents local reconfiguration
(like bug fixing).
The topic of this paper is to give an overview of the common
operators approach on dynamically reconfigurable platform
and show examples of implementation of such operators. As
we will see, we argue that such operators offer an answer to
successful reconfiguration of SDR systems. Indeed, in
opposition with static communication component, the
(re)use of common operators which can adapt their behavior
according to functions needs are key points in software radio
architectures. Parameterization studies become a very
important issue in this context, mainly because it decreases
the size of the software to be downloaded, and also because
it shortens the runtime of the software reconfiguration.

Moreover this type of technique optimizes the sharing
between the software and the hardware of the execution
platform.
The following part shows how a common operators
approach aims at improving multi-standard SDR systems
operation in terms of reconfiguration time and performance.
Then we introduce two commonly used operators in SDR
systems which are FIR filter and CORDIC. From this we
extract parameters that can be used to design those operators
on common operators. The final part of this paper
introduces an example of CORDIC implementation with a
common operators approach in a MIMO context. Then we
conclude on the result of this work.

2. COMMON OPERATORS APPROACH

Common operators approach aims at, independently of the
standard, researching the minimum number of highest level
operators, which are used in a maximum of functions of a
maximum of standards implemented in a unique device. As
standards and functions proposed for communication
systems grew up drastically, it can be derived it may be
usefull to have a maximum reuse of processing elements.
Common operators approach gives an interesting
opportunity to perform the maximum reuse of hardware part
for multi-standard, multi-function systems. This approach
aims at increasing the granularity of classical arithmetic
operators in the context of multi-standard SDR systems
design. Fig. 1 shows how those common operators can be
identified. Reference [3] proposes a formal method to find
the optimal common operators for a given multi-standard
system by a graph optimization.

Layer

OperatorFunction
Standard

 ...

Bluetooth

DECT

IS95

GSM

UMTS
Function

Modulateur

Synchro

Access

Channel coding

Source coding

HMI

Coarse
grain

Fine
grain

FIR cellular

Cordic

FFT

Butterfly

Table

MAC

Basic
function

Carrier synchro

Mapping

Filter

Correlator

Screen gestion

Physical

Link

Network

Transport

 ...

Application

Fig.1 Common operators definition

The main characteristic of a common operator is its ability
to change its behavior by parameterization in order to realize
different operations at different times. It is important to

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

notice that, as such operator has to be generic enough to be
reused in different contexts, it will not have the same
performance as a dedicated one.
Make an operator generic also offers the possibility to
consider on-the-fly reconfiguration. With simple and quick
parameterization indeed a common operator can change its
behavior and give the possibility to perform a
reconfiguration in a short time. Nevertheless as we will see
in this document this approach offers a good trade-off in
terms of complexity and cost (in area occupation and
resource).

3. FINITE IMPULSE RESPONSE (FIR) OPERATOR

This part presents a FIR filter common operator architecture
for software radio applications. This filter is designed for a
FPGA implementation in order to take advantage of
reconfiguration possibilities of this technology. Indeed in a
software radio context, systems may have to dynamically
adapt architecture at the hardware level. Furthermore, we
will see that this approach, combined with partial
reconfiguration, aims at coping with on-the-fly
reconfiguration.

3.1 Classical Approach

A FIR is a well known operator for the implementation of
filtering functions. Fig.2 shows a representation of FIR
function.

Fig.2 Finite Impulse Response (FIR) filter

Mathematical expression is given by the following equation:

There are many FIR‘s architecture in the literature, each of
them specialized in a certain context. We can find
optimization in speed computation, in area occupation or
whatever. The coefficients choice shapes the filter frequency
response. In a classical approach those coefficients are set
once at design time and can not be changed. Then if the
system needs to reconfigure itself, it has to erase previous
filter and implement a new one. As we can imagine, on the
one hand this can not cope with on-the-fly reconfiguration as
this would require too much time for such an amount of
data. On the other hand memory resources needed to store

FIR IP with different coefficients and architectures to face to
standard change is relatively important. From this point, we
can imagine a FIR that can reconfigure its coefficients and
behavior (tap number, filter size or over sampling factor). It
is important to notice that this kind of architecture is still
generic. Indeed our goal is to realize an operator with re use
facility.

3.2 Design Methodology

In a software radio context, architecture has to be
reconfigurable, but the ways to implement it may vary. This
reconfiguration can be made at system level (for standard
change for example) or at local level (behavior change of an
operator). We investigate the second proposition here.
A FIR operator has been designed with a static and a
reconfigurable part. Its static part is a computational part
that does not need to be reconfigured, and control is located
in the reconfigurable part. FIR control is managed by a finite
state machine (FSM) that can handle numerous
configurations of filters. Keep also in mind that FIR IP can
be duplicated and pipelined in order to realize more
powerful and complex FIR functions.

3.3 FIR Design

FSM has two main entries: number of taps (modulo 4) and
filter size (number of coefficients, modulo 8). Coefficients
are stored into Block SelectRAM configured as ROM. This
solution decreases risks of erroneous FIR response inherent
to addressing problems after a reconfiguration step.
Moreover we take advantage here of reconfiguration
capacity of FPGA by decreasing logic control. We choose a
dynamic of 8 bits for data and coefficients for this IP, which
can cope with many situations. Fig.3 shows a representation
of the IP architecture.
A key point for reconfiguration is that as filter coefficients
are stored in Block SelectRAM, a partial reconfiguration
with a reconfiguration by difference can be done. The use of
such reconfiguration aims on one hand at decreasing
bitstream size for reconfiguration, and on the other hand at
authorizing on-the-fly reconfiguration.

Fig.3 FIR architecture

FIR 4TAP Processing part

Data Coefficients

Data in FIR 4TAP Control part

Coefficient
bitstream Reconfigurable

part

Static part

Select data

Number of IP

Data out

Select over sample
factor

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

In a running system indeed, as only a sub-part of the FPGA
(Block SelectRAM for coefficients) is reconfigured, the rest
of the FPGA is still in operation. Reconfiguration by
difference methodology aims at generating a bitstream
underlying only the changes done between the previous and
the current configuration. In this case, for coefficients
change, only some memory slices are changed, so that the
bitstream generated by this method is drastically smaller in
size than original one.
This architecture has been implemented on a VIRTEX II.
Configuration was one IP FIR_4TAP, in order to perform
RRC filter for UMTS, with a set of coefficients of 32 and an
over-sampling factor of 2 and 4 which are classical values to
reach the performance for UMTS. For this configuration,
partial reconfiguration bitstream size obtained by difference
is 2 KB, whereas a usual partial bitstream is near from
850 KB. Repercussion of such a size reduction is a
diminution of resource occupancy and also a reduction of
time reconfiguration (depending on the communication bus
used for the design). It is not in the scope of this paper to
expose the complete methodology to design such an
operator but it’s an important part of the work needed to
perform this realization [4].

4. CORDIC OPERATOR

This part presents CORDIC (COordinate Rotation Digital
Computing) concept that allows the computing of
elementary operations such as products, divisions and
trigonometric functions. It performs rotations without using
multiplication operations.

4.1 Principle of the CORDIC algorithm

In the CORDIC concept [5], a rotation of 2-D vector is
performed with a required angle φ decomposing this into a
sum of micro-rotations of elementary angles φi expressed as
values depending on the i-th power of 2 that can be
performed by hardware through simple shift-add operation.
The result is more and more accurate as the number of
iterations n increases since the vector orientation is
successively closer to its target.
The CORDIC algorithm for trigonometric computing is
defined by the equations:
 xi+1 = xi – di . dyi where dyi = yi × 2-i
 yi+1 = yi + di . dxi dxi = xi × 2-i

 ai+1 = ai – di . dai dai = tan-1(2-i)

Where x and y are the coordinates of the vector as shown in
Fig. 4, a is the angle accumulator that stores the effective
rotation, and d is the sign of rotation. The general principle
of the CORDIC algorithm consists of making the rotation
vector turn in the appropriate direction by an increasingly
small angle until the angle a or the values x and y are

approximately equal to 0. Furthermore, a CORDIC micro-
rotation is a rotation with an intrinsic increase gain of the
magnitude r of the vector quantified by the factor A:

An = ∏(1 + 2-2i

)1/2

 n

The CORDIC method can be employed in two different
modes, known as the “rotation” mode and the “vector”
mode. In the rotation mode, the co-ordinate components of
a vector and an angle of rotation are given and the co-
ordinate components of the original vector, after rotation
through a given angle, are computed. In the vector mode,
the co-ordinate components of a vector are given and the
magnitude and angular argument of the original vector are
computed.

X

Y

x

y

x’

y’

V

V’

ϕ

Fig. 4 Rotation of vector V in the Cartesian plane

4.2 CORDIC operator architecture

An architecture of CORDIC operator is proposed by Rader
[6]. It’s a simple and effective method for calculating a
range of complex functions, which relies on a technique of
additions and shifters. The CORDIC operator calculates
most trigonometric-based functions by approximation. The
iterative structure of the CORDIC algorithm makes possible
an implementation using the pipeline structure of Fig. 5 thus
limiting critical path length in such a way as to speed up
operation.

Fig. 5 CORDIC operator pipeline architecture

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5. SCENARIO OF RECONFIGURATION OF CORDIC
OPERATOR

This part presents a scenario of reconfiguration involving
CORDIC operator. It highlights both application and
implementation points of view in the context of a Multiple-
Input Multiple-Output (MIMO) system. MIMO is one of the
most promising technologies to enhance the wireless
communications performances because of the increase in
terms of bandwidth capacity it may provide [7]. In the
various MIMO detection algorithms, V-BLAST square root
decoder is an interesting trade-off to obtain a high
performance with a reasonable complexity.

5.1. Description of the “V-BLAST Square Root”
algorithm

The “V-BLAST Square Root” algorithm is proposed by
B. Hassibi [8]; it avoids the repeated calculation of the
pseudo-inverse of the channel matrix, as well as the matrix
inversion by using unitary transformations. It makes possible
the reduction of the calculation load from O(M4) to O(M3)
without degrading the BER. To do this, B. Hassibi uses a
recurrence relationship well known in adaptive RLS
(Recursive Least Square) filtering. He demonstrates that if
one applies a Givens rotation sequence to the recurrence
relationship, one obtains P1/2 after i iterations. But it still
remains to calculate Qα. The best solution will be to apply a
relationship that provides P1/2 and Qα at the same time. This
is why B. Hassibi puts forward a new recurrence relationship
starting from the preceding matrix block, to which he adds a
block vector.
The algorithm is summarized below:
Step 1: Calculation of P1/2 and Qα,
- Initialization

 (1)
- for i = 1 to N

 (2)
End

After N iterations one obtains P1/2

N =P1/2 , QN =Qα,
Qi representing the ith iteration with Q0 initialized to 0,
ei indicates the i th column of the identity matrix,

iΘ corresponds to a unitary transformation, which
transforms the matrix of equation (2) into a lower triangular
matrix. The methods for finding this type of unitary
transformation are well known [8].

Iteration: For i=0 to M–1
Step 2: Determine the minimum norm of the lines of P1/2 and
permutate this line so that it becomes the last one. This
means to determine the optimal detecting order to obtain the
strongest transmit signal. Likewise permutate the index of
the received symbol correspondingly. Perform a unitary
transformation that satisfies relationship (3).

 (3)
As for equation (2), Σ is a unitary transformation that
transforms P1/2 into an upper triangular matrix.
Step 3: Update Qα on the basis of Qα∑
Step 4: Calculate the MMSE nulling vectors
 wi= pi q

*
α,i (4)

Step 5: Calculate the strongest transmit signal ŷi
 ŷi =wi r i (5)
Step 6: Slice ŷi to the nearest value in the signal
constellation
 ŝi= decision(ŷi) (6)
Step 7: Cancel the interference of the sliced strongest
transmit signal from the vector of received signals and return
to step 2
 ri-1 = r i–hi ŝi (7)
End

5.2. Functional description of the “V-BLAST Square
Root” algorithm

The architecture of the “V-BLAST square-root” MIMO
decoder is illustrated in Fig. 6. It consists of 6 processing
modules. The inputs consist of the received messages r and
the values of the channel matrix H. The first three modules
(M1, M2, M3) perform the decomposition of the matrix H
using unitary transformations. These modules calculate the
dimensions P1/2, Qa (Step 1), pi (Step 2) and q*a,i (Step 3).
The next module M4 determines the optimal decoding order
and calculates the vector wi (nulling vector) (Step 4).
Module M5 decides the transmitted symbol vector (Step 6)
and the last module M6 performs interference cancellation
between the symbols (Step 7).

Fig. 6 Functional architecture of the “V-Blast square-root” MIMO

decoder
The three modules (M1, M2, M3) exhibit similar
architectures. These modules are designed using CORDIC

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

operators (see example below for the calculation of P1/2 and
Qα in module M1). Instead of performing QR decomposition
by a triangular network, we use a CORDIC-based Givens
rotation sequence.

5.3. Square Root Decoder based on CORDIC operator

A total parallel architecture of the calculation of P1/2 and
Qα, in module M1 is shown in Fig. 7. This calculation
requires 29 CORDIC operators in rotation mode. They use
different angles (θ1, θ2, φ1, φ2, θ3, θ4, φ3, φ4) that are pre-
calculated by a CORDIC operator in vectoring mode (not
shown in Fig. 7).

P1/2 and Qa

θ1

Ø1

0
0 0

0

P0
1/2 and Q0

0

θ2

Ø1 Ø1 Ø1

θ3

Ø2 Ø2 Ø2

0 0 0

Ø2

Ø3 Ø3 Ø3 Ø3 Ø3

Ø4 Ø4 Ø4 Ø4 Ø4

θ3 θ4 θ4 θ3

Ø2

0-1

0

Ø3

0

Ø4

0

Ø4

0-1 0 0 0 0 0 0

P1/2 and Qa

θ1

Ø1

0
0 0

0

P0
1/2 and Q0

0

θ2

Ø1 Ø1 Ø1

θ3

Ø2 Ø2 Ø2

0 0 0

Ø2

Ø3 Ø3 Ø3 Ø3 Ø3

Ø4 Ø4 Ø4 Ø4 Ø4

θ3 θ4 θ4 θ3

Ø2

0-1

0

Ø3

0

Ø4

0

Ø4

0-1 0 0 0 0 0 0

Fig. 7 Calculation of P1/2 and Qα in the module M1 in total parallel

structure

This total parallel structure may lead to a waste of
computational capabilities, since the common operators are
implemented repetitively and they do not work at the same
time. Therefore the iterative use of several CORDIC
operators can optimize the resources. So an iterative
structure of decoder can be implemented using for example
three parallel CORDIC operators instead of 29 CORDIC
operators in the total parallel structure. The number of
CORDIC operators can be changed to adapt different
requirements of wireless communication (different number
of antennas and different throughputs) [9].
All iterations of CORDIC algorithm are performed in
parallel, using a 20 steps pipelined structure. The input data
of the CORDIC periodically changes and static
implementation of the interconnections frameworks uses a
great number of multiplexers to switch from one
interconnection context to the next one. They take a lot of
surface of FPGA and lead to waste of power consumption.
Nevertheless, these multiplexers remain in the same state
during 20 steps of CORDIC operations. The only difference
between every 20 steps is the interconnections. This fact
lets inspire the implementation on dynamically

reconfigurable hardware to improve the configuration time,
area efficiency and flexibility.
Our approach splits the processing into a static hardware
skeleton which is composed of decoding processing
elements and a reconfigurable part where the
interconnections are mapped and can evolved at run-time
depending on the step of processing to perform. In this
approach, dynamic reconfiguration is used to change the
state of interconnections instead of multiplexers. Every
cycle shown in Fig.8 represents one state of multiplexers.

P1/2 and Qa

Ø1

0 0 0 0

P0
1/2 and Q0

0

θ2

Ø1 Ø1

θ4

Ø2 Ø2 Ø2

0 0 0

Ø2

Ø3 Ø3 Ø3 Ø3 Ø3

Ø4 Ø4 Ø4 Ø4 Ø4

θ4 θ3 θ3 θ3

Ø2

0-
1

0

Ø3

0

Ø4

0

Ø4

0-
1

0 0 0 0 0 0

Cycle 1

Cycle 2

Cycle 5

Cycle 4

Cycle 6

Cycle 3

Cycle 7 Cycle 8

Cycle 9
Cycle 10

θ1

Ø1

P1/2 and Qa

Ø1

0 0 0 0

P0
1/2 and Q0

0

θ2

Ø1 Ø1

θ4

Ø2 Ø2 Ø2

0 0 0

Ø2

Ø3 Ø3 Ø3 Ø3 Ø3

Ø4 Ø4 Ø4 Ø4 Ø4

θ4 θ3 θ3 θ3

Ø2

0-
1

0

Ø3

0

Ø4

0

Ø4

0-
1

0 0 0 0 0 0

Cycle 1

Cycle 2

Cycle 5

Cycle 4

Cycle 6

Cycle 3

Cycle 7 Cycle 8

Cycle 9
Cycle 10

θ1

Ø1

Fig. 8 Calculation of P1/2 and Qα in the module M1 in iterative

structure

The main computation is preformed in the CORDIC
operator and only the interconnections between them are
changed at certain regularly moment. Fig. 9 illustrates the
entire decoder architecture which contains two parts. The
first one is a fixed part that contains 4 CORDIC units (3
CRUs: CORDIC Rotation Unit and 1 CVU: CORDIC
Vectoring Unit), a multiplier and an adder or substractor.
The second one is the reconfigurable one, allowing the
implementation of interconnections between fixed part
modules. In the reconfigurable part, only routing and
registers are implemented. The same register is placed and
routed in the same area of FPGA in order to retain the
information stored in the register after a reconfiguration. It
reduces power consumption because only wire resources
are used in the reconfigurable module.

CRU

CRU

Multiplier

RGE0

CRU

RGE1

RGE2

BM

Fixed AreaReconfigurable Area

CVU

Adder/Substractor

RGE3
CRU

CRU

Multiplier

RGE0RGE0

CRU

RGE1RGE1

RGE2RGE2

BM

Fixed AreaReconfigurable Area

CVU

Adder/Substractor

RGE3RGE3

Fig. 9 Position of fixed modules and reconfigurable module

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

The reconfigurable part is connected to the modules of fixed
part through LUT-based Bus Macro provided by Xilinx to
ensure the right place and routing crossing over partial
reconfigurable area. This MIMO decoder for 2 antennas
system with QPSK signal constellation is implemented on a
Virtex-II xc2v-2000 form Xilinx. Table 1 shows some
synthesis results of fixed part and reconfigurable part of
decoder.

Table 1: Synthesis results of MIMO decoder

It can save about 36% slices comparing to the multiplexer
based decoder. In this table, the transmission time from Host
to FPGA is not counted and the reconfiguration times are
calculated by the size of Bitstreams and ICAP frequency of
Xilinx FPGA. In this application, several CORDIC
operators are reused iteratively as a common operator in the
MIMO decoding algorithm. The synthesis results show the
configuration time, area efficiency and flexibility of MIMO
decoder improvement, by using the dynamic partial
reconfiguration in the CORDIC common operator.
Furthermore, the CORDIC algorithm is widely used for
VLSI implementation of digital signal processing
applications. Reference [10] also shows the CORDIC
algorithm is often used to implement different
communication functions in Software Defined Radio (SDR)
systems, like direct digital synthesizers, AM, FM and PM
modulators and ASK, PSK and FSK modulators, etc.

6. CONCLUSION

We have presented a design approach for SDR systems
based on common operators. This approach consists in
reusing operators and adapting their behavior according to
standards and functions need. A key point is to define
common operators for multi-standards, multi-functions
systems, and once those operators are identified, design
them in the way that they can be reconfigurable by
parameters change. This is classically done by splitting an
operator in two parts. One is static and used for
computation. Second one has to be dynamically
reconfigurable and has the control of the static part. The

“half-reconfigurable” common operators can be then
implemented and cope with dynamic reconfiguration for
SDR systems. We also introduce the FPGA facility in terms
of reconfiguration. This, combined with partial
reconfiguration and reconfiguration by difference, has an
important impact on bitstream size. Use of such
methodology decreases drastically the size of bitstreams and
without doubt offers shorter reconfiguration time as well as
releases memory resources.

7. ACKNOWLEDGMENT

This work was performed in project E2R II which has
received research funding from the Community’s Sixth
Framework programme. This paper reflects only the authors’
views and the Community is not liable for any use that may
be made of the information contained therein. The
contributions of colleagues from E2R II consortium are
hereby acknowledged

REFERENCES

[1] V. Rodriguez, C. Moy, J. Palicot, “Install or invoke?: The

optimal tradeoff between performance and cost in the design
of multi-standard reconfigurable radios,” Wiley InterScience,
Wireless Communications and Mobile Computing Journal, to
appear, 2007

[2] J.-P. Delahaye, P.Leray, C. Moy, J. Palicot, "Managing
Dynamic Partial Reconfiguration on Heterogeneous
Platform", SDR Forum, Technical Conference 2005,
Anaheim, USA, November 2005

[3] C. Moy, J Palicot, V. Rodriguez, D. GIRI, “Optimal
determination of common operators for multi-standard
Softawre-Defined Radio”, 4th Karlsruhe Workshop on
Software Radios, March 2006, Karlsruhe, Germany

[4] Jean-Philippe DELAHAYE, Jacques PALICOT, Christophe
MOY, Pierre LERAY, “Partial Reconfiguration of FPGAs for
Dynamical Reconfiguration of a Software Radio Platform”,
IST Mobile and Wireless Communications Summit'07, 1-5
July 2007, Budapest, Hungary

[5] J.E. Volder, "The CORDIC Trigonometric Computing
Technique", IRE Trans. Elect. Comput., EC(8):330-334,
1959.

[6] C. M. Rader, “VLSI Systolic Arrays for Adaptive Nulling”,
IEEE Sig. Proc. Mag, Vol. 13, No. 4, pp. 29–49

[7] G.J. FOSCHINI “Layered space time architecture for wireless
communication in a fading environment when using multi-
element antennas” Bell Labs Journal, pages 41-57, 1996

[8] B. Hassibi, “An efficient square-root algorithm for BLAST,”
http://mars.bell-labs.com/

[9] H. Wang, P. Leray, J. Palicot. “A reconfigurable architecture
for MIMO square root decoder”. Reconfigurable Computing:
Architectures and Applications, p. 317–322, 2006

[10] J.Valls, et al. “The use of CORDIC in Software Defined
Radios: A Tutorial”, IEEE Communications Magazine,
September, 2006

 Target FPGA

Xilinx Virtex-II

Number of
slices

Flip Flops Reconf

time

Without Reconf 4505(40%) 5927(27%) 16ms

Fixed part 2857(26%) 4766(22%) 12ms

Reconf part 1 85 148 0.4ms

Reconf part 2 85 148 0.4ms

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

