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ABSTRACT 
 
This paper deals with common operators used to perform 
multi-standard, multi-function applications. In opposition 
with highly complex communication components, each 
exclusively dedicated to a given standard ("Velcro" 
approach), we argue that one of the key point in software 
radio is the (re)use of modular operators as proposed in [1]. 
Those operators can adapt their behavior according to the 
function to realize by parameters change. This indicates the 
need to dynamically adapt systems architecture at the 
hardware level. Taking into account the possibility of partial 
reconfiguration offered by the FPGA [2], we can reconfigure 
common operators while the rest of the design is still 
running. Common operators approach also offers possibility 
to use reconfiguration by difference that aims at reducing 
bitstream size and then decrease the cost of the 
reconfiguration in terms of memory and time allocation.  
 
 

1. INTRODUCTION 
 
Software radio basically refers to a collection of techniques 
that permit the reconfiguration of communication systems 
without changing any hardware part. We can see then that 
one of the challenges of future generation of communication 
systems is the reconfiguration of the device. This 
reconfiguration may be needed at highest level of the system 
as at lowest level. Highest has to be understood here like a 
complete reconfiguration of a system (for a standard change 
for example). Lowest level represents local reconfiguration 
(like bug fixing).  
The topic of this paper is to give an overview of the common 
operators approach on dynamically reconfigurable platform 
and show examples of implementation of such operators. As 
we will see, we argue that such operators offer an answer to 
successful reconfiguration of SDR systems. Indeed, in 
opposition with static communication component, the 
(re)use of common operators which can adapt their behavior 
according to functions needs are key points in software radio 
architectures. Parameterization studies become a very 
important issue in this context, mainly because it decreases 
the size of the software to be downloaded, and also because 
it shortens the runtime of the software reconfiguration. 

Moreover this type of technique optimizes the sharing 
between the software and the hardware of the execution 
platform. 
The following part shows how a common operators 
approach aims at improving multi-standard SDR systems 
operation in terms of reconfiguration time and performance. 
Then we introduce two commonly used operators in SDR 
systems which are FIR filter and CORDIC. From this we 
extract parameters that can be used to design those operators 
on common operators. The final part of this paper 
introduces an example of CORDIC implementation with a 
common operators approach in a MIMO context. Then we 
conclude on the result of this work. 
 

2. COMMON OPERATORS APPROACH 
 
Common operators approach aims at, independently of the 
standard, researching the minimum number of highest level 
operators, which are used in a maximum of functions of a 
maximum of standards implemented in a unique device. As 
standards and functions proposed for communication 
systems grew up drastically, it can be derived it may be 
usefull to have a maximum reuse of processing elements. 
Common operators approach gives an interesting 
opportunity to perform the maximum reuse of hardware part 
for multi-standard, multi-function systems. This approach 
aims at increasing the granularity of classical arithmetic 
operators in the context of multi-standard SDR systems 
design. Fig. 1 shows how those common operators can be 
identified. Reference [3] proposes a formal method to find 
the optimal common operators for a given multi-standard 
system by a graph optimization. 
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Fig.1 Common operators definition 

 

The main characteristic of a common operator is its ability 
to change its behavior by parameterization in order to realize 
different operations at different times. It is important to 
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notice that, as such operator has to be generic enough to be 
reused in different contexts, it will not have the same 
performance as a dedicated one.  
Make an operator generic also offers the possibility to 
consider on-the-fly reconfiguration. With simple and quick 
parameterization indeed a common operator can change its 
behavior and give the possibility to perform a 
reconfiguration in a short time. Nevertheless as we will see 
in this document this approach offers a good trade-off in 
terms of complexity and cost (in area occupation and 
resource).  
 
3. FINITE IMPULSE RESPONSE (FIR) OPERATOR 

 
This part presents a FIR filter common operator architecture 
for software radio applications. This filter is designed for a 
FPGA implementation in order to take advantage of 
reconfiguration possibilities of this technology. Indeed in a 
software radio context, systems may have to dynamically 
adapt architecture at the hardware level. Furthermore, we 
will see that this approach, combined with partial 
reconfiguration, aims at coping with on-the-fly 
reconfiguration. 
 
3.1 Classical Approach 
 
A FIR is a well known operator for the implementation of 
filtering functions. Fig.2 shows a representation of FIR 
function. 
 

 
Fig.2 Finite Impulse Response (FIR) filter 

 
Mathematical expression is given by the following equation: 

  
There are many FIR‘s architecture in the literature, each of 
them specialized in a certain context. We can find 
optimization in speed computation, in area occupation or 
whatever. The coefficients choice shapes the filter frequency 
response. In a classical approach those coefficients are set 
once at design time and can not be changed. Then if the 
system needs to reconfigure itself, it has to erase previous 
filter and implement a new one. As we can imagine, on the 
one hand this can not cope with on-the-fly reconfiguration as 
this would require too much time for such an amount of 
data. On the other hand memory resources needed to store 

FIR IP with different coefficients and architectures to face to 
standard change is relatively important. From this point, we 
can imagine a FIR that can reconfigure its coefficients and 
behavior (tap number, filter size or over sampling factor). It 
is important to notice that this kind of architecture is still 
generic. Indeed our goal is to realize an operator with re use 
facility. 
 
3.2 Design Methodology 
 
In a software radio context, architecture has to be 
reconfigurable, but the ways to implement it may vary. This 
reconfiguration can be made at system level (for standard 
change for example) or at local level (behavior change of an 
operator). We investigate the second proposition here. 
A FIR operator has been designed with a static and a 
reconfigurable part. Its static part is a computational part 
that does not need to be reconfigured, and control is located 
in the reconfigurable part. FIR control is managed by a finite 
state machine (FSM) that can handle numerous 
configurations of filters. Keep also in mind that FIR IP can 
be duplicated and pipelined in order to realize more 
powerful and complex FIR functions. 
 
3.3 FIR Design 
 
FSM has two main entries: number of taps (modulo 4) and 
filter size (number of coefficients, modulo 8). Coefficients 
are stored into Block SelectRAM configured as ROM. This 
solution decreases risks of erroneous FIR response inherent 
to addressing problems after a reconfiguration step. 
Moreover we take advantage here of reconfiguration 
capacity of FPGA by decreasing logic control. We choose a 
dynamic of 8 bits for data and coefficients for this IP, which 
can cope with many situations. Fig.3 shows a representation 
of the IP architecture. 
A key point for reconfiguration is that as filter coefficients 
are stored in Block SelectRAM, a partial reconfiguration 
with a reconfiguration by difference can be done. The use of 
such reconfiguration aims on one hand at decreasing 
bitstream size for reconfiguration, and on the other hand at 
authorizing on-the-fly reconfiguration. 
 

 
Fig.3 FIR architecture 
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In a running system indeed, as only a sub-part of the FPGA 
(Block SelectRAM for coefficients) is reconfigured, the rest 
of the FPGA is still in operation. Reconfiguration by 
difference methodology aims at generating a bitstream 
underlying only the changes done between the previous and 
the current configuration. In this case, for coefficients 
change, only some memory slices are changed, so that the 
bitstream generated by this method is drastically smaller in 
size than original one. 
This architecture has been implemented on a VIRTEX II. 
Configuration was one IP FIR_4TAP, in order to perform 
RRC filter for UMTS, with a set of coefficients of 32 and an 
over-sampling factor of 2 and 4 which are classical values to 
reach the performance for UMTS. For this configuration, 
partial reconfiguration bitstream size obtained by difference 
is 2 KB, whereas a usual partial bitstream is near from 
850 KB. Repercussion of such a size reduction is a 
diminution of resource occupancy and also a reduction of 
time reconfiguration (depending on the communication bus 
used for the design). It is not in the scope of this paper to 
expose the complete methodology to design such an 
operator but it’s an important part of the work needed to 
perform this realization [4]. 
 

4. CORDIC OPERATOR 
 
This part presents CORDIC (COordinate Rotation Digital 
Computing) concept that allows the computing of 
elementary operations such as products, divisions and 
trigonometric functions. It performs rotations without using 
multiplication operations. 
 
4.1 Principle of the CORDIC algorithm 
 
In the CORDIC concept [5], a rotation of 2-D vector is 
performed with a required angle φ decomposing this into a 
sum of micro-rotations of elementary angles φi expressed as 
values depending on the i-th power of 2 that can be 
performed by hardware through simple shift-add operation. 
The result is more and more accurate as the number of 
iterations n increases since the vector orientation is 
successively closer to its target.  
The CORDIC algorithm for trigonometric computing is 
defined by the equations:  
 xi+1 = xi – di . dyi                where  dyi = yi × 2-i 
       yi+1  = yi + di . dxi                               dxi = xi × 2-i

 
       ai+1 = ai – di . dai                              dai = tan-1(2-i) 
 
Where x and y are the coordinates of the vector as shown in 
Fig. 4, a is the angle accumulator that stores the effective 
rotation, and d is the sign of rotation. The general principle 
of the CORDIC algorithm consists of making the rotation 
vector turn in the appropriate direction by an increasingly 
small angle until the angle a or the values x and y are 

approximately equal to 0. Furthermore, a CORDIC micro-
rotation is a rotation with an intrinsic increase gain of the 
magnitude r of the vector quantified by the factor A:  
 
An = ∏( 1 + 2-2i

 )1/2 

             n 

The CORDIC method can be employed in two different 
modes, known as the “rotation” mode and the “vector” 
mode. In the rotation mode, the co-ordinate components of 
a vector and an angle of rotation are given and the co-
ordinate components of the original vector, after rotation 
through a given angle, are computed. In the vector mode, 
the co-ordinate components of a vector are given and the 
magnitude and angular argument of the original vector are 
computed. 
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Fig. 4 Rotation of vector V in the Cartesian plane 

 
4.2 CORDIC operator architecture  
 
An architecture of CORDIC operator is proposed by Rader 
[6]. It’s a simple and effective method for calculating a 
range of complex functions, which relies on a technique of 
additions and shifters. The CORDIC operator calculates 
most trigonometric-based functions by approximation. The 
iterative structure of the CORDIC algorithm makes possible 
an implementation using the pipeline structure of Fig. 5 thus 
limiting critical path length in such a way as to speed up 
operation. 
 

 
Fig. 5 CORDIC operator pipeline architecture 
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5. SCENARIO OF RECONFIGURATION OF CORDIC 
OPERATOR 

 
This part presents a scenario of reconfiguration involving 
CORDIC operator. It highlights both application and 
implementation points of view in the context of a Multiple-
Input Multiple-Output (MIMO) system. MIMO is one of the 
most promising technologies to enhance the wireless 
communications performances because of the increase in 
terms of bandwidth capacity it may provide [7]. In the 
various MIMO detection algorithms, V-BLAST square root 
decoder is an interesting trade-off to obtain a high 
performance with a reasonable complexity. 
 
5.1. Description of the “V-BLAST Square Root” 
algorithm 
 
The “V-BLAST Square Root” algorithm is proposed by 
B. Hassibi [8]; it avoids the repeated calculation of the 
pseudo-inverse of the channel matrix, as well as the matrix 
inversion by using unitary transformations. It makes possible 
the reduction of the calculation load from O(M4) to O(M3) 
without degrading the BER. To do this, B. Hassibi uses a 
recurrence relationship well known in adaptive RLS 
(Recursive Least Square) filtering. He demonstrates that if 
one applies a Givens rotation sequence to the recurrence 
relationship, one obtains P1/2 after i iterations. But it still 
remains to calculate Qα. The best solution will be to apply a 
relationship that provides P1/2 and Qα at the same time. This 
is why B. Hassibi puts forward a new recurrence relationship 
starting from the preceding matrix block, to which he adds a 
block vector.  
The algorithm is summarized below:  
Step 1: Calculation of P1/2   and Qα,   
- Initialization 

 (1) 
- for i = 1 to N 

 (2) 
End 
 
After N iterations one obtains P1/2

N =P1/2   , QN =Qα,   
Qi representing the ith iteration with Q0 initialized to 0, 
ei indicates the i th column of the identity matrix, 

iΘ corresponds to a unitary transformation, which 
transforms the matrix of equation (2) into a lower triangular 
matrix. The methods for finding this type of unitary 
transformation are well known [8]. 

Iteration: For i=0 to M–1 
Step 2: Determine the minimum norm of the lines of P1/2 and 
permutate this line so that it becomes the last one. This 
means to determine the optimal detecting order to obtain the 
strongest transmit signal. Likewise permutate the index of 
the received symbol correspondingly. Perform a unitary 
transformation that satisfies relationship (3). 

 (3) 
As for equation (2), Σ  is a unitary transformation that 
transforms P1/2 into an upper triangular matrix.  
Step 3: Update Qα on the basis of Qα∑ 
Step 4: Calculate the MMSE nulling vectors 
 wi= pi q

*
α,i                                                                 (4) 

Step 5: Calculate the strongest transmit signal ŷi        
 ŷi =wi r i                                                                       (5) 
Step 6: Slice ŷi to the nearest value in the signal 
constellation  
 ŝi= decision( ŷi )                                                 (6) 
Step 7: Cancel the interference of the sliced strongest 
transmit signal from the vector of received signals and return 
to step 2   
 ri-1 = r i–hi ŝi                                                              (7) 
End 
 
5.2. Functional description of the “V-BLAST Square 
Root” algorithm 
 
The architecture of the “V-BLAST square-root” MIMO 
decoder is illustrated in Fig. 6. It consists of 6 processing 
modules. The inputs consist of the received messages r and 
the values of the channel matrix H. The first three modules 
(M1, M2, M3) perform the decomposition of the matrix H 
using unitary transformations. These modules calculate the 
dimensions P1/2, Qa (Step 1), pi (Step 2) and q*a,i (Step 3). 
The next module M4 determines the optimal decoding order 
and calculates the vector wi (nulling vector) (Step 4). 
Module M5 decides the transmitted symbol vector (Step 6) 
and the last module M6 performs interference cancellation 
between the symbols (Step 7).  
 

 
Fig. 6 Functional architecture of the “V-Blast square-root” MIMO 

decoder 
The three modules (M1, M2, M3) exhibit similar 
architectures. These modules are designed using CORDIC 
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operators (see example below for the calculation of P1/2 and 
Qα in module M1). Instead of performing QR decomposition 
by a triangular network, we use a CORDIC-based Givens 
rotation sequence.  

 
5.3. Square Root Decoder based on CORDIC operator 
 
A total parallel architecture of the calculation of P1/2 and 
Qα, in module M1 is shown in Fig. 7. This calculation 
requires 29 CORDIC operators in rotation mode. They use 
different angles (θ1, θ2, φ1, φ2, θ3, θ4, φ3, φ4) that are pre-
calculated by a CORDIC operator in vectoring mode (not 
shown in Fig. 7).  
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Fig. 7 Calculation of P1/2 and Qα  in the module M1 in total parallel 

structure 

This total parallel structure may lead to a waste of 
computational capabilities, since the common operators are 
implemented repetitively and they do not work at the same 
time. Therefore the iterative use of several CORDIC 
operators can optimize the resources. So an iterative 
structure of decoder can be implemented using for example 
three parallel CORDIC operators instead of 29 CORDIC 
operators in the total parallel structure. The number of 
CORDIC operators can be changed to adapt different 
requirements of wireless communication (different number 
of antennas and different throughputs) [9]. 
All iterations of CORDIC algorithm are performed in 
parallel, using a 20 steps pipelined structure. The input data 
of the CORDIC periodically changes and static 
implementation of the interconnections frameworks uses a 
great number of multiplexers to switch from one 
interconnection context to the next one. They take a lot of 
surface of FPGA and lead to waste of power consumption. 
Nevertheless, these multiplexers remain in the same state 
during 20 steps of CORDIC operations. The only difference 
between every 20 steps is the interconnections. This fact 
lets inspire the implementation on dynamically 

reconfigurable hardware to improve the configuration time, 
area efficiency and flexibility.  
Our approach splits the processing into a static hardware 
skeleton which is composed of decoding processing 
elements and a reconfigurable part where the 
interconnections are mapped and can evolved at run-time 
depending on the step of processing to perform. In this 
approach, dynamic reconfiguration is used to change the 
state of interconnections instead of multiplexers. Every 
cycle shown in Fig.8 represents one state of multiplexers. 
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Fig. 8 Calculation of P1/2 and Qα  in the module M1 in iterative 

structure 

The main computation is preformed in the CORDIC 
operator and only the interconnections between them are 
changed at certain regularly moment. Fig. 9 illustrates the 
entire decoder architecture which contains two parts. The 
first one is a fixed part that contains 4 CORDIC units (3 
CRUs: CORDIC Rotation Unit and 1 CVU: CORDIC 
Vectoring Unit), a multiplier and an adder or substractor. 
The second one is the reconfigurable one, allowing the 
implementation of interconnections between fixed part 
modules. In the reconfigurable part, only routing and 
registers are implemented. The same register is placed and 
routed in the same area of FPGA in order to retain the 
information stored in the register after a reconfiguration. It 
reduces power consumption because only wire resources 
are used in the reconfigurable module.  
 

CRU

CRU

Multiplier

RGE0

CRU

RGE1

RGE2

BM

Fixed AreaReconfigurable Area

CVU

Adder/Substractor

RGE3
CRU

CRU

Multiplier

RGE0RGE0

CRU

RGE1RGE1

RGE2RGE2

BM

Fixed AreaReconfigurable Area

CVU

Adder/Substractor

RGE3RGE3

 

Fig. 9 Position of fixed modules and reconfigurable module  
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The reconfigurable part is connected to the modules of fixed 
part through LUT-based Bus Macro provided by Xilinx to 
ensure the right place and routing crossing over partial 
reconfigurable area. This MIMO decoder for 2 antennas 
system with QPSK signal constellation is implemented on a 
Virtex-II xc2v-2000 form Xilinx. Table 1 shows some 
synthesis results of fixed part and reconfigurable part of 
decoder. 

 
Table 1: Synthesis results of MIMO decoder 

 
It can save about 36% slices comparing to the multiplexer 
based decoder. In this table, the transmission time from Host 
to FPGA is not counted and the reconfiguration times are 
calculated by the size of Bitstreams and ICAP frequency of 
Xilinx FPGA. In this application, several CORDIC 
operators are reused iteratively as a common operator in the 
MIMO decoding algorithm. The synthesis results show the 
configuration time, area efficiency and flexibility of MIMO 
decoder improvement, by using the dynamic partial 
reconfiguration in the CORDIC common operator. 
Furthermore, the CORDIC algorithm is widely used for 
VLSI implementation of digital signal processing 
applications. Reference [10] also shows the CORDIC 
algorithm is often used to implement different 
communication functions in Software Defined Radio (SDR) 
systems, like direct digital synthesizers, AM, FM and PM 
modulators and ASK, PSK and FSK modulators, etc.   
 

6. CONCLUSION 
 
We have presented a design approach for SDR systems 
based on common operators. This approach consists in 
reusing operators and adapting their behavior according to 
standards and functions need. A key point is to define 
common operators for multi-standards, multi-functions 
systems, and once those operators are identified, design 
them in the way that they can be reconfigurable by 
parameters change. This is classically done by splitting an 
operator in two parts. One is static and used for 
computation. Second one has to be dynamically 
reconfigurable and has the control of the static part. The 

“half-reconfigurable” common operators can be then 
implemented and cope with dynamic reconfiguration for 
SDR systems. We also introduce the FPGA facility in terms 
of reconfiguration. This, combined with partial 
reconfiguration and reconfiguration by difference, has an 
important impact on bitstream size. Use of such 
methodology decreases drastically the size of bitstreams and 
without doubt offers shorter reconfiguration time as well as 
releases memory resources. 
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       Target FPGA 

Xilinx Virtex-II 

Number of 
slices 

Flip Flops Reconf 

time 

Without Reconf 4505(40%) 5927(27%) 16ms  

Fixed part 2857(26%) 4766(22%) 12ms 

Reconf part 1 85 148 0.4ms 

Reconf part 2 85 148 0.4ms 
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