

LEVERAGING SYSTEMC AND OCP TO IMPROVE THE VERIFICATION OF FPGA-BASED

SOFTWARE DEFINED RADIOS

Joshua Noseworthy (Mercury Computer Systems, Inc., Chelmsford, MA,
USA) jnosewor@mc.com

ABSTRACT

The design complexity of the modern day Software
Defined Radio (SDR) is increasing as system designers
continue to explore ways to successfully integrate Field
Programmable Gate Arrays (FPGAs) into SDR-based
systems. One of the many challenges associated with the
integration of FPGAs into SDR-based systems is
verification at both the component and system levels.
Unlike software-based components which can rely on
common interface standards such as those set forth by the
Software Communication Architecture (SCA), FPGA-
based components have no common standard upon which
to draw. This makes it extremely difficult to leverage
verification Intellectual Property (IP) assets across
multiple FPGA-based components since each component
could potentially have a unique interface. The result is a
time-consuming process of customizing verification IP to
suite the needs of a particular FPGA component interface.
 Another challenge of introducing FPGAs into SDR-
based systems is verification at the system or application
level. Typical systems are heterogeneous, containing a
mix of FPGAs and other devices operating at varying
levels of abstraction. This degree of heterogeneity makes
the provision of a single verification environment, in
which both hardware and software elements can be
verified, difficult.
 These challenges can be alleviated through the
introduction of modeling languages, such as SystemC,
that are capable of supporting varying levels of modeling
abstraction and standardized interface techniques for
FPGA components, such as those described by the Open
Core Protocol (OCP). SystemC provides a C++ based
standard for the specification of both hardware and
software systems at varying levels of abstraction.
SystemC is capable of modeling at both the abstract
transaction level and the Register Transfer Level (RTL),
as well as at levels in between. Many commercially
available hardware description language (HDL)
simulators offer mixed-language environments where
SystemC models can interact with both VHDL and
Verilog models. This creates a powerful verification
environment that enables designers to fully test and verify
their synthesizable RTL together with C/C++ based

structures. In addition, this type of environment allows for
the co-verification of the application’s FPGA and
software-based components prior to the application’s
actual deployment.

1. INTRODUCTION

1.1 The JTRS Communication Architecture

The Software Communications Architecture (SCA)
specification establishes an implementation-independent
framework with baseline requirements for the
development of Joint Tactical Radio System (JTRS)
software defined radios (SDRs). The requirements
include both interface and behavioral specifications that
ensure the maintenance of portability and configurability
across vendor platforms.
 The operating environment mandated by the SCA
includes a real-time, POSIX-based operating system,
minimum CORBA support, and the Core Framework.
This type of environment cannot be realistically supported
on specialized hardware devices such as digital signal
processors (DSPs) and field programmable gate arrays
(FPGAs). A standardized way in which the goals of the
SCA can be achieved for DSPs and FPGAs is still
forthcoming.

1.2 Open Core Protocol

The Open Core Protocol (OCP) delivers a non-
proprietary, openly licensed, core-centric protocol that
comprehensively describes the system-level integration
requirements of intellectual property (IP) cores. OCP
eliminates the task of repeatedly defining, verifying,
documenting and supporting proprietary interface
protocols by providing a standard way to specify point-to-
point interfaces between two communicating entities. A
clear advantage to using OCP to describe a core’s
interface(s) is that the mechanisms through which one
OCP interface can talk to another are clearly defined by
the OCP specification. Even if two connected cores have
dissimilar interfaces, the fact that they are valid OCP
interfaces means the information needed to resolve those
dissimilarities is readily available.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 OCP interfaces are specified by their OCP profiles.
An OCP profile is a collection of OCP parameters and
their associated values. Changing the values associated
with OCP parameters results in either the inclusion or
exclusion of specific OCP signals and/or changes their
behavior. A designer can completely reconstruct the
interface given the interface’s profile and vice versa.
Profiles are most easily described using an XML schema.
However, at the present time a standardized schema that
is recognized by OCP is forthcoming.

1.3 SystemC

SystemC is a collection of C++ libraries and macros that
facilitate the modeling and simulation of concurrent
processes. SystemC enables designers to model complete
systems at varying levels of abstraction. Levels of
abstraction correlate to the accuracy of the model with
respect to the number of clock cycles that have elapsed.
The highest level of abstraction is the least accurate with
respect to timing. At this level, the model assumes that an
infinite amount of time exists between two successive
clock cycles.
 The lowest levels of abstraction are the most accurate
with respect to timing. Models are constructed such that
the amount of work performed on a cycle by cycle
corresponds to the amount of work that would be
expected from an identical time lapse in hardware.
 The principle use of SystemC surrounds the
development of verification assets, though a synthesizable
subset of the language does exists. These verification
assets are most often developed to enable the functional
verification of a device under test (DUT). The verification
assets can exist at almost any level of abstraction as what
is most important is that they are capable of mimicking
the behavior of the device that will connect to the DUT
when it is implemented in hardware. In most cases, it is to
the benefit of verification engineers to develop their
assets at the highest level of abstractions as this will result
in the fastest simulation speed.

1.4 Transaction Level Modeling

Transaction Level Modeling (TLM) is a technique used to
model communications between two interconnected
modules at very high levels of abstraction. In this model,
transactions being communicated between the two entities
are completely decoupled.
 Figure 1 shows an example of a typical transaction-
level model. Communications between the bus functional
model and the DUT are mediated through the TLM’s
channels. The BFM generates transactions over the
channel through the use of very simple put/get
mechanisms as shown in Figure 2.

`

Figure 1: TLM Example.

Figure 2: BFM Module talking to channel.

 The channel communicates these transactions to the
DUT through an adapter. The adapter translates generic
transactions that have been communicated over the
channel into protocol specific transactions.
 SystemC lends itself to the implementation of TLMs
as most of the abstract data types necessary to do such an
implementation are part of the C++ standard template
library. The channel itself need not be anything more than
a simple request FIFO where the BFM module is
responsible for pushing requests into the FIFO, whilst the
DUT is responsible for pulling them out. Similarly, the
DUT is responsible for pushing responses into a response
FIFO, whilst the BFM is responsible for pulling them out.
 The use of a TLM has several benefits associated
with it. First, the verification engineer need not be
concerned with the generating protocol-specific
transaction in order to communicate with the DUT.
Instead, the engineer need only understand the simple put
and get methods that are necessary in order to access the
channel. The TLM takes care of the rest.
 Second, most protocol specific transactions are
associated with some degree of overhead. This overhead
includes pack headers, and/or extra signaling that is
necessary to drive the interface. The use of TLM enables
transactions to be communicated over the channel using
the least amount of information possible. Immediately
before the presentation of the transaction to the DUT, the
adapter translates the transaction into protocol specific
signaling.
 Finally, TLMs create an opportunity for the existence
of a single verification environment that services multiple

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

IP modules. If the interfaces of the modules differ, the
engineer need only change the adaptor to perform the
appropriate translations. This process can be further
simplified through the adoption of standard IP interfaces.
Doing would enable a single BFM

2. OCP-BASED VERIFICATION ENVIRONMENTS

As systems become increasingly complex, the cost of
developing verification assets increases substantially.
This increase in cost is a result of the amount of effort
required to develop more sophisticated system models.
These cost increases can be softened through leveraging
verification assets over multiple projects. This is often
hard to do as most IP interfaces are often not consistent
across multiple projects. As a result, verification assets
that were used on previous occasions may require
substantial rework before they are suitable for use on new
projects.

The adoption of standard interfaces, such as those
defined by OCP, enables designers to maintain interface
consistency across every IP module that is designed with
interfaces that conform to the chosen standard. As a result
of this consistency, designers can begin to leverage IP
across several projects. OCP makes this possible by
limiting the number of forms a particular interface can
assume. The fact that an interface contains a limited
number of signals, each having well-defined behavior,
facilitates the specification of the interface through a
collection of parameter values. This collection of
parameter values, known as a profile, completely
specifies the inclusion or exclusion of specific OCP
signals within a particular interface, as well as the
behavior of each signal within the interface.
 Given a limited set of interfaces and a suitable
mechanism for specifying the appearance and behavior of
the interface, it becomes reasonable to expect that a
verification engineer could develop a single verification
environment that is capable of conforming to any valid
OCP interface. Such an environment requires that upon
instantiation of the environment, the profile is analyzed
and the environment is adjusted to suit the needs of the
particular OCP interface. This is exactly what the OCP
TLM does.

2.1 OCP Transaction Level Model

The OCP TLM is a collection of C++ source and header
files that implement an OCP-based TLM. The TLM exists
to facilitate the simulation of modules that interconnect
with other modules, memory, and/or system buses.
 The OCP TLM defines four levels of abstraction:
Layer 0, Layer 1, Layer 2, and Layer 3. For the purpose
of this discussion, we will only consider Layer 0 and

Layer 1. Layer 0 is considered nothing more than pure
RTL. Layer 1 is said to be cycle true but faster than RTL.
It provides the user with a set of SystemC-based APIs that
can be used to access the channel. For example, if the
user wants to communicate a request over the channel, the
engineer need only call the method putOCPRequest().
The user need not be concerned with the assertion of the
correct signals as if the work were being done at Layer 0.
 In many instances, there is a need to initiate a request
at Layer 1, and then have it communicated to a module
that is running at Layer 0. This scenario is almost always
the case when a BFM is being used to verify the
functionality of a DUT. To accomplish this, the OCP
TLM requires the use of a layer adapter. The layer
adaptor accepts Layer 1 requests and then in turn
generates the equivalent Layer 0 request. Responses are
similar except that they originate in Layer 0 and are
converted into Layer 1 transactions. This process is
summarized in Figure 3.

Figure 3: L0/L1 Slave Adapter Connectivity.

2.2 Mixed Language Simulation Environments

The vast majority of commercially available HDL
simulator support mixed-language environments. Mixed-
language environments support the interconnection of
VHDL, Verilog, and SystemC modules. Such an
environment enables synthesizable VHDL and/or Verilog
to be functionally verified in a C++ based environment.
This is a powerful capability as the level of effort to build
a C++ based verification environment is a fraction of
what would be required to build the same environment in
either VHDL or Verilog. Coupled with the use of
standard OCP interfaces, the OCP TLM has the potential
to fulfill the needs of functional verification so long as the
designers that are designing the modules are willing to
begin designing using standard OCP interfaces.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

3. COVERIFICATION USING SYSTEMC AND OCP

The verification of an SDR application can be a
challenging task as an increasing number of application
are beginning to use both hardware and software
components. Traditionally, co-simulating hardware and
software has been a difficult task as the number of tools
that provide a means of doing so are fairly limited. This
often leads designers no other choice but to independently
verify each component with the hopes that things will just
work when the application gets deployed as a collection
of verified components. Often times this is not the case.

Furthermore, it is more often the case that an
application is being developed prior to or independently
of any available hardware. Without an adequate co-
simulation environment, there is no mechanism that
enables these designers to accurately observe component
interactions prior to the availability of hardware. Since
hardware availability is often at the latest stages of many
projects, the existence of an adequate co-simulation
environment would enable designers to retire the risks
associated with an application’s deployment long before
the hardware is made available. Retiring such risks earlier
in the design process will facilitate the integration
processes that occur once hardware does become
available.
 Using SystemC based verification environments for
SDR platforms have the potential to enable the co-
verification of both hardware and software components
within the same environment. Since SystemC is a C++
based environment, it becomes possible to execute the
software infrastructure, including CORBA, within the
hardware simulator as one or more SystemC modules.
 An alternative approach to running the entire
infrastructure inside of the simulator might be to run a
CORBA server that accepts requests from other processes
and then communicates them to the hardware components
running in the simulator. The software infrastructure runs
outside of the simulator, as it would in an actual system,
communicating with hardware only when it needs to. This
latter model has the potential to result in faster
simulations.

4. CONCLUSION

This paper has highlighted the advantages of
standardizing component interfaces using OCP and how it
might affect verification. We have seen that the use of
standardized interfaces for FPGA components satisfies
many of the needs of modern day communication systems
including reusability and portability across multiple
platforms.

 In addition, we saw how SystemC and OCP can be
used to create powerful verification environments that are
leveraged across multiple projects. This reduces cost,
decreases time to market, and results in better verification
assets over time.
 Finally, we examined how SystemC can be used to
create powerful co-simulation environments for verifying
interactions between hardware and software components.
Using standard hardware interfaces, such as OCP, is
critical for the success of these environments as the
majority of companies could never afford the costs of re-
customizing the environment’s interface to support each
application.

5. REFERENCES

 [1] M. S. Programmable Radio Consortium, “Software

Communication Architecture specification,”
November 2001, v2.2.

[2] T. O. M. Group, “Common object request broker
architecture: Core Specification,” March 2004,
v3.0.3.

[3] O. I. Partnership, “Open core protocol specification,”
2005, v3.1 Available: http://www.opc-ip.org.

[4] J.T.R.S.J.P. Office, “Extension for component
portability for specialize hardware processors,”
March 2005, v3.1.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

