
DESIGNING A RECONFIGURABLE PROCESSING DATAPATH FOR SDR
OVER HETEROGENEOUS RECONFIGURABLE PLATFORMS

Jean-Philippe DELAHAYE1, Pierre LERAY2, Loïg GODARD2, Amor NAFKHA2,

Christophe MOY2
1DGA/CELAR, French MoD, Bruz, France

jean-philippe.delahaye@dga.defense.gouv.fr
2IETR/Supelec-SCEE Laboratory, Campus of Rennes, France

{pierre.leray, loig.godard, amor.nafkha, christophe.moy}@supelec.fr

ABSTRACT

The implementation of a dataflow application on a
heterogeneous platform has to tackle with several design
issues and should take into account many design trade-
offs. One of the design issues is the connectivity between
processing functionalities due to the variety of
communication interfaces in a heterogeneous system. To
overcome this issue system designers have often to
choose suitable abstraction level software mechanisms to
ensure communication between different DSPs/FPGAs,
thus introducing some protocol overhead decreasing the
application performance. On the contrary, the
implementation of the processing datapath architecture
we propose here is at a low level of abstraction and
offers a lightweight approach for designing flexible
baseband applications. It particularly suits to
heterogeneous designs involving FPGAs being
dynamically reconfigured in the context of Software
Defined Radio - SDR - systems.

1. INTRODUCTION

Software Defined Radio (SDR) is expected to be the most
appropriate answer to future multi-standards handsets
design challenges [1]. We can also predict that for a long
time SDR systems will be heterogeneous in terms of
computing resources, in order to deal with a wide variety of
radio applications and with the increasing throughput needs
due to the digital communication improvements. This
implies many research activities in the fields of multi-
processing and heterogeneous computing. All the more so as
dynamic reconfiguration is involved. But even if solutions
exist for DSP [2] where it is more natural to support
reconfiguration, it is less common in the field of FPGA. In
our previous work [3] we investigate a combined approach,
from the application side to the implementation on the
platform, while modeling the architecture of SDR
heterogeneous platforms and detailing the multi-standards
applications needs in terms of reconfigurability. The
analysis of the reconfiguration requirements is detailed in

[4] for multi-standards physical layer applications based on
the GSM, UMTS/UTRA/FDD and 802.11g OFDM
standards. This permitted to extract from these studies
different use cases of reconfiguration corresponding to
different granularity levels. A “Hierarchical Distributed
Configuration Management” (HDMC) [4] mode has been
proposed to control the multi-granularity levels of
reconfiguration over heterogeneous resources. This HDMC
framework manages the configuration of the various
baseband functionalities building the processing datapath.
This paper concerns the design approach of dataflow-
oriented applications implemented on heterogeneous
processing resources made of GPPs, DSPs and FPGAs.

The next section of this paper overviews the hardware of the
chosen SDR system architecture and presents the
implementation of the configuration management model.
Section 3 introduces the main concepts for the design of a
datapath oriented application on a heterogeneous platform.
Section 4 presents the dynamic partial reconfiguration and
its use in datapath oriented applications. A case study of a
reconfigurable FIR filtering function is presented in section
5 as an example of implementation.

2. SYSTEM ARCHITECTURE

2.1. Heterogeneous Hardware SDR platform

This section overviews the system architecture. Details are
especially given on the FPGA architecture, which offers a
large range of design possibilities. The paper focuses on
architectural solutions that could be adopted to achieve
partial reconfiguration (PR) and enhance the flexibility of
the application. We present other architectural solutions in
[5] to get the PR capability manageable on hardware
platform which belongs to the E²R EU project.
Fig. 1 shows the SDR platform architecture which is mainly
comprising three hardware modules, the GPP, the DSP and
the FPGA successively described below.
The GPP and the external storage memories are resources
used from a standard PC station. The GPP is the host of the

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

platform. It is responsible of initializing the platform
resources, loading the DSP code and the initial FPGA full
configuration. The control-oriented functions of each
hardware module are started during the initialization phase
and afterwards will take over the control of their module at
run-time.

The DSP is a C64 from TI. The DSP executes sub-parts of
the processing datapath baseband modulation coding
functions. The DSP local data memory stores bitstream files
and the DSP is able to send directly onto configuration bus
of the FPGA these bitstreams. The DSP is also able to fully
reconfigure the FPGA by the external SelectMAP interface.
It will be shown later that another way is chosen here (self-
reconfiguration).

Fig. 1 : The Heterogeneous Reconfigurable SDR Platform
Architecture

The FPGA of our platform is a Virtex-II device from
Xilinx. The FPGA is involved on the platform as follows.
The static region is dedicated to the fixed modules for fixed
and parameterizable processing functions. The fixed part
also contains the modules responsible of the control, as the
embedded processor, the configuration interface and the
data buses of the processing datapath linked to the GPP and
the DSP. The second area of the FPGA is dedicated to the
dynamically reconfigurable modules. These modules are the
processing functions containing parts which will be
potentially reconfigurable to answer the application context
switching needs. The dynamically reconfigurable parts are
located into Partially Reconfigurable Regions (PRR) in form

of Partial Reconfigurable Modules (PRM). The PRMs
represent the different contexts of the reconfigurable
functions.
The partial reconfigurability is a key feature to enhance the
flexibility of applications. The PR allows to select the part
of FPGA to reconfigure rather than to fully reconfigure the
device each time a sub-part of the FPGA has to be changed.
One of the architectural solutions to allow the use of the
partial reconfiguration is to implement a configuration
controller, for instance an embedded processor (PPC,
µBlaze), linked to the internal configuration access port
(ICAP) available from the Virtex-II FPGA series. This is the
solution adopted in our SDR platform experimentation and
illustrated in the system architecture shown in Fig. 1. This
architectural solution allows the FPGA to perform self-
reconfiguration. Self or auto-reconfiguration means that the

reconfigured areas of the FPGA (PR Regions) are managed
by the FPGA itself. This latter could be much simpler, as a
state machine, but the µBlaze processor will also be
responsible of other managing tasks.
The details about the partial reconfiguration features are
presented in [5]. We also achieve the PR on the Virtex-4 in
the same manner as on the Virtex-II. The improvements
between Xilinx Virtex-II PR and V-4 PR are also described
in [5].

Components Library: The hardware and software designs
of the processing functions are stored in the external storage
memory of the platform where they can be stored and
extracted by the general configuration management of the
system.

Local
Bitstream Storage

ICAP
Controller

DSP
(TI C64)

DSP Local Code

SRAM
General library Storage

Bitstream lib.

DSP Code lib.

GPP Code

GPP
(PC Station)

FPGA (Xilinx Virtex –II)

Partially
Reconfigurable
Modules

GPP
Config.

controller

DSP
Config.

controller

GPP
Processing

Functions

DSP
Processing

Functions

DSP SRAM
Static
Region

B
U

S
M

A
C

R
O

 In
te

rf
ac

e

PRM 3

PRM 2

PRM 1

Reconfigurable
Switch
Box

MicroBlaze

Config.
Controller

St
at

ic
M

od
ul

e

BUS
Controller

CNA

ICAP

EMIF

ComPort

PRR

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

2.2. Software Management

The Hierarchical and Distributed Configuration
Management (HDCM) framework has been deployed on the
hardware platform presented above. The HDMC Model
detailed in [4] is composed of several Configuration
Management Units (CMU). The CMUs are responsible of
the configuration management of the reconfigurable
datapath which supports a multi-standard baseband
application. The CMUs are linked together in a hierarchical
structure made up of three levels. It provides an abstraction
to handle the configuration data. The HDCM model is
implemented on the SDR hardware platform with the
following deployment. The general management unit called
L1_CM runs on the GPP, indeed the host of the platform.
This L1_CM is responsible for the management by
parameters of the whole baseband processing. The
configuration orders are sent by the L1_CM to the
L2_CMUs located on the different hardware modules of the
platform. L2_CMUs are responsible of the distribution of
the configuration parameters of all the processing functions
running on a hardware module. The L2_CMU implemented
in the FPGA module runs on the embedded processor
(µBlaze). At the third level, the L3_CMUs are associated to
the processing functions. Each L3_CMU manages the
configuration of the processing component depending on its
implementation. Our platform is composed in this example
of one L1_CM, three L2_CMUs and several L3_CMUs
depending on the number of parameterizable or
reconfigurable processing functions implemented in the
processing datapath.

3. PROCESSING DATAPATH DESIGN
APPROACH

3.1 Principles

It is widely admitted that component modeling
methodologies are suitable approaches to design software
and also baseband processing applications in the software
defined radio systems, as described in [6]. These
methodologies allow to define self-dependant functionalities
which are reusable, portable and interoperable. The top part
of Fig. 2 illustrates the mapping of datapath oriented
applications over a heterogeneous hardware platform. This
mapping is a key issue when considering the needs of
portability, and interoperability. The connectivity and the
synchronization of the reconfigurable components are
among the issues that SDR designers have to cope with due
to the different link interfaces, signal clocks involved on the
platforms with DSP, FPGA, GPP. In order to answer these
issues, hardware abstraction layers, which aims at providing
uniform services over heterogeneous platform, are
introduced in software radio systems. Standardization

efforts in SDR, overviewed in [7], are particularly strong in
the middleware modeling for the improvement of
portability, interoperability and ease of the integration of
software radio components of different resources.
The component modeling with standard interfaces, as the
component example shown in the bottom part of the Fig. 2,
aims at avoiding the connectivity issues. This object
oriented representation, coming from the work done in the
EU CAST project [8], is designed using Java language to
obtain an abstraction layer of the reconfigurable processing
chain to enable the reconfiguration management at a high
level of abstraction.

GPP DSP FPGA

F1 F2 F3

F6F5F4
M
A
P

Platform

Application

Data In

Data Out

Operating
Control

Configuration
Control

Fig. 2: Dataflow Application over Heterogeneous Hardware

We detail in the next section a component which
encapsulates the baseband processing function to provide
standard interfaces. Even at a low level of abstraction the
interfaces of our component are implemented the model
depicted in and override the differences in clock signals and
link interfaces of a heterogeneous platform.
The datapath designed with these reconfigurable
components is associated with the HDCM configuration
management datapath briefly described in section 2.2 and
allows to reconfigure dynamically the baseband
functionalities to answer external service switches requests.

3.2. Processing Component Encapsulation

The component encapsulation adapter designed for a
heterogeneous hardware platform should provide the same
behavior for any implementation of functions in hardware
on a FPGA or in software on a DSP. This means that the
component adapter should provide standard external
interfaces independently of any processing functionality that

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

is encapsulated in it. The external interfaces of the
component adapter have to ensure the connectivity between
the different HW and SW implementations of processing
functionalities to form an entire processing chain.
We propose a component adapter illustrated in Fig. 3. In this
component, every external interfaces work asynchronously
with handshake signals. The request/acknowledge
mechanism ensures the same behavior for any component
implementation. Inside the component adapter, the
processing function runs synchronously, which allows to
encapsulate any of existing IP previously designed.

data_in data_out

Handshake
Signals
(data_in)

Handshake
signals
(data_out)

Handshake
Signals (mode, config)

Control_processing

Sync_processing

control signals

Timing
data_in

Timing
reconf

ena

Block_processing

Processing Function

Adapt
interface

Tx DataRx Data

Adapt
interface

Timing
data_out

Fig. 3 : Processing Function Component Encapsulation

The component should provide the following interfaces. The
“Timing data_out” and “Timing data_in” interfaces are both
responsible of controlling the availability of data
respectively to produce and consume data. Internally these
interfaces generate the enable signal for the processing
function.
The Rx (respectively Tx) data interfaces receive the data to
process (and respectively give the processed data) in FIFO-
like buffers.
Finally, the “Timing reconfig” interface provides the
processing mode (idle, init, run) and the configuration
signals are used to maintain the data in the data transmission
interfaces during the reconfiguration process.
A component encapsulates a baseband function and the
instantiated components are connected together to form the
complete datapath. The data rate in the datapath is auto-
regulated by the asynchronous data transfer mechanism. The
application, made up of several components, has a “GALS”
(Globally Asynchronous Locally Synchronous) behavior.
There are two cases of component connections: two
processing components are linked together by physical
busses in the case of HW/HW or HW/SW data transmission
or shared memory in the case of SW/SW components
connection. The component implementations are detailed in
the following section.

3.3. Component implementation

The component described in the previous part has different
implementations as it aims at building up the processing
datapath at a low level of abstraction. So the component has
two implementations developed either in C or VHDL
depending on the target, respectively DSP or FPGA.

/* GALS function header in C*/

#include <stdarg.h>

fct(int mode, int * flagMail_in, int * data_in, int * flagMail_out, int * data_out, ...);

-- GALS function declaration of the entity in VHDL

entity ip_fct is

Port (

clk : in std_logic;

reset: in std_logic;

--

din : in std_logic_vector(31 downto 0);

flagMail_in : in std_logic _vector(Nb_datain_mailbox downto 0);

reset_flagMail_in : out std_logic;

dout : out std_logic_vector(31 downto 0);

flagMail_out: out std_logic_vector(Nb_dataout_mailbox downto 0);

reset_flagMail_out : in std_logic

);

end ip_fct;

Software
function

Hardware
function

Fig. 4: Component Declaration for Hardware and Software

Implementations.

The interfaces are identical for both kinds of
implementation. The arguments of the C function and the
signals of the VHDL component represented in Fig. 4 are
the following:
- Mode : the mode argument allows to control the

processing mode of the function (init, run, bypass are the
main modes)

- flagMail_in allows to control the availability of new data
on the input interface.

- Data_in is the data address where the input data are
available.
o In the case of a software function, this argument is a

pointer on a memory location (for SW to SW
components data transmission) or an address of a
physical bus (for the HW to SW components data
transmission).

o In the case of a hardware entity, the signal is the input
data bus of the component.

- flagMail_out allows to control data presence on the
output. The synchronous processing function will not be
(re)-started if the output storage memory is full.

- Data_out is the same as data_in for the output data of the
component.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

4. FPGA PARTIAL RECONFIGURATION
DESIGN

4.1 Reconfiguration of Functionality.
The partial reconfigurability allows changing selectively
segments of a FPGA functionality without suspending
operations of the remaining part. There are several benefits
for partial reconfiguration (PR): it reduces the configuration
time and saves storage memory as the partial
reconfiguration files (bitstreams) are smaller than full ones.
It may also limit the overhead and the bandwidth spending
for code downloading in case of OTAR.
The recent improvements in standard design flows from
Xilinx [9] and the use of PlanAhead tool for PR allow more
design opportunities. This permits to take benefit as much as
possible of the flexibility offered by dynamically
reconfigurable FPGA, as illustrated in section 5 with the
example of the FIR.

4.2. Reconfigurable Hardware component
interconnection.

Different kinds of communication data link architectures are
possible for the interconnection of reconfigurable IP inside
the FPGA. The bus link is the more flexible and allows
easily to connect/disconnect IPs on it. The direct
connectivity of a ring link architecture best suits dataflow
oriented applications in terms of performance but limits the
flexibility of a reconfigurable datapath compared to the bus
link. To increase the flexibility of the point-to-point
datapath architecture, we propose to introduce the concept
of a Reconfigurable Switch Box (RSB) that has different
configurations to directly connect IPs between each other.
This solution benefits of the point-to-point connectivity and
increases the flexibility of the datapath. Two different
configurations of the RSB are illustrated in Fig. 5. The main
drawback of this solution is the design effort as it adds one
more reconfigurable block in the FPGA.

Hw IP0

Hw IP1

Hw IP2

Sw Tsk0 Hw IP0 Hw IP1 Hw IP2 Sw Tsk1

Sw Tsk0 Hw IPi Sw Tsk1 Hw IPj

Sw0

Sw Tsk2

C1 C2

C1

C2

RSB

RSB RSB

Sw1

Fig. 5 : HW/SW Function Reconfiguration

5. IMPLANTATION EXAMPLES OF FIR
PROCESSING MODULE

We describe in [5] several implementations of partially
reconfigurable processing modules using the partial
reconfiguration capability of the Virtex-4. We propose in [5]
various design solutions to perform partial reconfiguration
of processing functions on FPGA, like the convolutional
coding, the constellation mapping or the FIR filtering. The
partial configuration feature of the FPGA is used to modify
either structural elements or some parameters in the
processing module architecture. In the next paragraph, we
detail three different types of partial reconfiguration
implementations applied on FIR IP.
The same FIR IP design has been reused for all
implementations. The FIR IP is based on a semi-parallel
FIR filter architecture with a four-multipliers MAC
structure. Several FIR functionalities have been
implemented, up to a 32-taps FIR filter. The complexity for
the FIR filter implementations is 325 slices (58% for the
FSM control part, and 42% for the processing part). The
FIR IP with this four-multipliers MAC has been used to
implement the three kinds of partially reconfigurable IPs.
The processing part is reused in each implementation of a
FIR as a common IP.

Depending on the nature of the processing module, the PR
region (red rectangle in Fig. 6) may support different parts
of a module. The three cases illustrated in Fig. 6 correspond
to different implementations of the FIR:
• For the full reconfigurable IP (Fig.6.1): the full
structure of the FIR is reconfigured.
• For the semi reconfigurable IP (Fig. 6.2): Only the
FSM of the FIR that control the operative part is
reconfigured.
• For the IP with the reconfigurable macro (Fig. 6.3): The
set of coefficients is located in the PR Region which refers
to the case of a FIR whose coefficients must be changeable.
FIR coefficients are stored in FPGA memory blocks
configured as ROM and the ROM blocks are reconfigured
to change the coefficients of the FIR. Consequences are
more important than expected at a first glance. This
approach prevents from designing and consuming
communication resources to access several sets of
coefficients: this includes address and data buses for RAM
access. ROM is directly reconfigured through the
configuration plane.
This FIR example shows that even concerning a very
common functionality, many considerations can be taken
into account, and consequently a plurality of
implementations may be derived.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

4TAP_FIR

FIR FSM

FIR_COEF

FIR control

SelectFIR_coef

1) Full-Reconfigurable FIR IP

ROM MACSRL16

Data_in

SelectData_in

4TAP_FIR FIR_COEF

ROM MACSRL16

Data_in

FIR FSM

FIR control

SelectFIR_coefSelectData_in

3) FIR IP with Reconfigurable Macro2) Semi-Reconfigurable FIR IP

4TAP_FIR FIR_COEF

ROM MACSRL16

Data_in

FIR FSM
FIR control

SelectFIR_coefSelectData_in

Bus Macro

Fig. 6 : Partially Reconfigurable FIR Filter Implementations

Table 1 sums up the different kinds of implementation of
the FIR IP. The choice of one solution versus the others is
depending on the requirements of the application in terms of
reconfigurability.

Reconfigurable IP Bitstream
Size

Reconfiguration
Time

FPGA Full-
reconfiguration

830kB 16 ms

Full-reconfigurable
FIR

74,7 kB 1,5 ms

Semi-Reconfigurable 25,7 kB 510 µs
Reconfigurable Macro 2 kB 40 µs

Tab.1. Bitstreams Size and Reconfiguration Time on a Virtex-II
2000

6. CONCLUSION

Currently, standard programming interfaces are generally
proposed at a high level over the hardware abstraction
software. The component design using standard
programming interfaces are designed at a high level of
granularity which could limit the flexibility of the
application.
Our approach of designing a processing datapath with a
standard reconfigurable component adapter for each
baseband function allows to rapidly implementing
communication chains over a heterogeneous platform and
increases the flexibility of the application. The proposed
processing datapath associated with a configuration
management HDCM structure allows to abstract the
configuration orders, mechanisms and demonstrates the
feasibility of a flexible SDR system with lightweight
software.

7. REFERENCES

[1] J. Mitola, "The software Radio architecture," IEEE Comms
Mag, vol. 33, no. 5, pp. 26--38, May 1995.

[2] C. Moy, A. Kountouris, A. Bisiaux, "HW and SW
Architectures for Over-The-Air Dynamic Reconfiguration by
Software Download," SDR Workshop of the IEEE Radio and
Wireless Conference, Boston, USA, Aug. 2003

[3] J.-P. Delahaye, J. Palicot, P. Leray, "Managing Dynamic
Partial Reconfiguration on Heterogeneous SDR Plaforms"
SDR Forum Technical Conference 2005, Los Angeles, Nov.
2005.

[4] J.-P. Delahaye, J. Palicot, P. Leray, "A Hierarchical Modeling
Approach in Software Defined Radio System Design," SIPS
2005, Athens-Greece, Nov. 2005.

[5] J.-P. Delahaye, C. Moy, P.Leray, J. Palicot, "Partial
Reconfiguration of FPGAs for Dynamical Reconfiguration of
a Software Radio Platform", IST Mobile SUMMIT 2007.

[6] A. Kountouris, C. Moy, "Reconfiguration in Software Radio
System", 2nd Workshop on Software Radio, (Karlsruhe,
Germany), March 2002.

[7] M. Scoville, S. Berger, R. C. Reinhart, J. E. Smith, "The
Software-Defined Radio & Cognitive Radio Inter-Consortia
Affiliation", MILCOM conference 2006.

[8] IST-CAST EU project, "Configurable Radio with Advance
Software Technology", 2002.

[9] Xilinx Inc, "Early Access Partial Reconfiguration User Guide"
UG 2006.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed

under a U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the
author's work for official U.S. Government purposes.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

