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ABSTRACT 
 
Sandbridge Technologies has developed a new architecture 
that supports wireless data rates necessary for 3.5G and 4G 
systems. Building upon the Sandblaster 1.0 architecture, the 
fully object code compatible Sandblaster SBX 2.0 
architecture extends support for high bit-rate processing, 
MIMO-OFDM acceleration, wider vector execution, and 
code compression. Architectural performance improvements 
range from 4x to more than 10x for a variety of signal 
processing applications while providing 100% object code 
compatibility with the Sandblaster 1.0 architecture. In this 
paper we describe the base Sandblaster 1.0 architecture and 
introduce the Sandblaster 2.0 enhancements.  
 

1. INTRODUCTION 
 
The architecture of a computer system is the minimal set of 
properties that determine what programs will run and what 
results they will produce [1]. It is the contract between the 
programmer and the hardware. Every computer is an 
interpreter of its machine language – that representation of 
programs that resides in memory and is interpreted 
(executed) directly by the (host) hardware. The logical 
organization of a computer’s dataflow and controls is called 
the implementation or microarchitecture. The physical 
structure embodying the implementation is called the 
realization. The architecture describes what happens, while 
the implementation describes how it is made to happen.  
 Programs for the same architecture should run 
unchanged on different implementations. An architectural 
function is transparent if its implementation does not 
produce any architecturally visible side effects. An example 
of a non-transparent function is the load delay slot made 
visible in the architecture due to pipeline effects. Generally, 
it is desirable to have transparent implementations. Most 
DSP and VLIW implementations are not transparent and 
therefore the implementation affects the architecture.  
In 2002, Sandbridge Technologies first described at the 
SDR Forum Technical Conference a multithreaded 
architecture for SDR applications [2]. The core architecture, 
called Sandblaster, supports deterministic real-time 

execution, vector DSP operations, RISC-style control code, 
and Java execution. The compound instruction set 
architecture was optimized for communications and 
multimedia applications. It includes a complete tool chain 
which removes the need for tedious DSP assembly language 
programming [3]. A well known problem for DSP 
compilers is saturating arithmetic [4]. So called fixed point 
(fractional) datatypes are non-associative and require 
special treatment within a compiler. The Sandblaster 
processor overcomes these limitations by providing both 
vector architectural execution and compiler algorithms that 
can determine the type of the variable and thus maintain 
serial semantics even under parallel execution [5]. The 
compiler is also able to automatically generate threads for 
the processor [6]. It ensures all synchronization and works 
in concert with automatic vector generation for efficient 
code generation.  Furthermore, ultra-fast simulation, 
profiling, and debugging of code that is embodied in the 
Sandblaster development environment is a key enabler of 
fast application development [5]. 
 In the original 2002 publication, we described the 
SB9600 baseband processor chip implementation. It 
contained four Sandblaster cores, an ARM processor, and 
an integrated set of peripherals. Handset operating 
requirements have significant restrictions on power 
dissipation. Techniques for achieving handset power levels 
are described in [7]. The SB9600, renamed the SB3011, was 
successfully fabricated in TSMC 90nm process technology 
and is shown in Figure 1. 
 The SB3011 contains four Sandblaster cores each 
running at 600MHz, 1.5Mbytes of onboard SRAM memory 
for L1 and L2 storage, multiple RF peripherals for MIMO 
operation, an ARM9 running at up to 300MHz, and a 
complete set of peripherals for smart phone integration. 
Measured power dissipation of the core (processor) for 
some important applications ranges from 45mW for GPRS 
to 65mW (per core) for WCDMA. Having originally 
published a 75mW per core target, measured results have 
validated the design. Table 1 summarizes the key 
Sandblaster parameters. 
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Figure 1.  Sandblaster SB3011 Chip 

 
Technology 90nm 
Processor Clock 600MHz 
Power Dissipation 75mW @ 1V, 25C 
On-chip Memory 1.5Mbytes 
Peak DSP performance 2.4 GMACs 

Table 1. Key Sandblaster Parameters (per core) 
 
With a tool chain capable of automatically generating 
parallel DSP code and a high-performance low-power chip 
fully functional, a number of communications systems have 
been implemented including WCDMA [8], GSM/GPRS [9], 
1xEVDO [10], TD-SCDMA [11] , NTSC Video Decode 
[12], WiMax [13], WiFi [14], GPS [15], AM/FM radio [16], 
DVB [17], and SINCGARS [18]. 
 In addition to communications systems, the processor is 
also capable of multimedia. A number of applications have 
been developed including MP3 [19], MPEG4 [20], and 
H.264 [21]. 

1.1 3.5G and 4G Systems Requirements 

Table 2 shows the growing performance requirements for 
future cellular devices. Not only are the bit-rate 
requirements exploding but the video resolution is also 
increasing. 
 In communications systems, the increased performance 
places additional processing burden in all areas of baseband 

design. Particularly stressed are error correction codes such 
as Viterbi, turbo, and LDPC codes. However, in addition, 
most of the future high bit-rate systems will be MIMO-
OFDM systems. Therefore fast FFTs and matrix combining 
are a requirement.  
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 3G 3.5G 4G 
Cellular 384kbps 14.4Mbps 100Mbps 
WLAN 11Mbps 54Mbps 108Mbps 
Video QVGA WVGA 720p 

Table 2. Cellular Terminal Technology Requirements 
 
Due to the demanding requirements of next generation 
communications systems, a number of instruction set 
extensions for the Sandblaster processor have been 
considered [22]. 
 The rest of this paper is organized as follows. Section 2 
provides an architectural overview of both the Sandblaster 
1.0 and 2.0 architectures. Section 3 provides architectural 
performance results, and Section 4 provides some 
concluding comments. 
 

2. THE SANDBLASTER 2.0 SBX ARCHITECTURE 
 
The instruction set for the original Sandblaster 1.0 
architecture is very simple. In total there are about 70 
instructions. In describing the architecture, we follow the 
format described in [1]. We start with the original 
Sandblaster 1.0 (SB1) architecture and describe the 
modifications incorporated into the Sandblaster 2.0 (SB2) 
architecture. 

2.1 Backward Compatibility 

Of primary importance is backward compatibility. All of the 
instructions supported in the Sandblaster 1.0 architecture are 
object code executable in the Sandblaster 2.0 architecture. 
This is a key criterion for what distinguishes a true 
architecture from an instruction set defined by its 
implementation. 

2.2 Spaces 

Instructions and their operands must be obtained from a 
storage space or an input source; the results are placed in a 
storage space or an output sink. The Sandblaster 
architecture supports memory, working store, and control 
store spaces. 
 The memory space is the storage space from which 
programs are directly executed. There is no embedding of 
other spaces within the memory space. 
 The working store is the set of concisely specifiable 
locations that temporarily contain operands or results of an 
operation. The working store is broken into three spaces: 

Memory Interface
ynchronous and
Asynchronous)

(S

Camera
Interface
Ehternet
Interface

TDM
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

Prog.
Timers/Gens

RX Data
TX Data

Real Time
Clock

AHB APB

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



general purpose registers (r), vector registers (vr), and 
accumulator registers (acc).   
The general purpose register file contains 16 entries of 32 
bits each. A 16-bit datatype occupies bits 0 to 15 and a 32-
bit datatype occupies bits 0 to 31. The vector register file 
contains eight entries. In SB1, each register file entry is 160 
bits, treated as four 16-bit or four 40-bit elements. Notably, 
the SB3011 implementation contains 4 cores each of which 
has 8 copies of the register state (e.g. 8 threads) for a total 
of 32 threads and 32 complete copies of the register state. In 
SB2, each entry is 256 bits and is treated as eight 32-bit 
vector elements or sixteen 16-bit vector elements. For 
backward compatibility, four 16-bit and four 40 bit-
elements are mapped into each 256-bit entry.  
 A vector encoding was chosen to preserve the number 
of names required. It should be noted that a scalar processor 
may require up to 16 unique names per each SB2 vector. 
Thus, even with just eight 16-element locations, a scalar 
processor could require 128 unique names.  
 The accumulator register file contains four entries. 
Each entry is 64 bits.  
 The control store is the storage that contains the status 
of the Sandblaster architecture. It contains the processor 
status, a 32-bit Instruction Address Register (commonly 
referred to as the PC), and other control state. 

2.3 Memory (Storage) Access  

In the Sandblaster architecture, the address space is a one-
dimensional vector of addresses. An address is a storage 
element’s unique name. The name spaces of a language are 
the disjoint sets into which the names of the objects are 
grouped. In the Sandblaster architecture a set of successive 
integers as addresses is assigned as the name-space of 
specific objects. This provides an isomorphic mapping 
between the set of all possible n-bit names and the set of 
binary integers from 0 to 2n-1. This constitutes a dense, 
ordered and measured set. Thus, the successor of a name 
can be calculated by addition. This allows the same 
mechanisms used for operations on data to be used for 
comparisons and additions desirable for names.  
 The address-set structure is linear with detection of 
addresses beyond the ends of the installed segment. This 
ensures that an increase in memory will not affect correct 
execution of programs. The minimal memory address 
resolution is an 8-bit byte. The byte ordering convention is 
big-endian. Bits, bytes, half-words, etc. are numbered from 
left to right. There is no requirement for data to be aligned 
with the datatype size (although it is advisable whenever 
possible). 
 The architecture permits generalized use of a three-
address operand format. Because working store indices are 
costly in bits, a working store element is used as the source 
and destination of an operation. The base address specifies 
the location of an array in memory. The Sandblaster 

architecture does not provide for a separate base address. 
The element address (sometimes referred to as an offset) 
specifies an element within a data structure, relative to the 
base address. It is placed in one of the general purpose 
registers. The displacement determines the location of an 
item relative to the current element address. It is placed 
within the instruction format. The address phrase in the 
architecture is offset + displacement. This effectively 
requires a precombined base and element address. The 
displacement is typically limited to a sign extended 4-bit or 
16-bit immediate field shifted to be aligned to the vector 
size. If a non-vector length displacement is required it must 
be computed. Index arithmetic for memory addressing takes 
place in the general purpose register file. All integer 
operations available for normal computations are available 
for index arithmetic. 
  
Type Interpretation Vector Form 
u8 1-byte unsigned integer n/a 
w8 1-byte signed integer n/a 
u16 2-byte unsigned integer u16[4],  u16[16] 
w16 2-byte unsigned integer w16[4], w16[16] 
fx16 2-byte fraction fx16[4], fx16[16] 
u32 4-byte unsigned integer u32[8], complex 
w32 4-byte unsigned integer w32[8], complex 
fx40 5-byte fraction fx40[4] 

Table 3. Sandblaster 2.0 Datatypes 
 
Addresses that refer directly to the machine-language names 
for data are called direct addresses. There are no indirect 
addresses (i.e. the use of a memory location that holds the 
direct address). The architecture provides the following 
direct address modes: 
• Address = Register Offset + Immediate Displacement 
• Address = Register Offset + Immediate Displacement; 

Offset = gpr[ra] + Signextend(imm) << 3 
• Address = Register Offset + Immediate Displacement; 

Offset = gpr[ra] + Signextend(imm) << 5 

2.4 Operations 

An operation code (opcode) is the encoded specification of 
the operation. A secondary operation is one implied by an 
explicitly specified operation. An example is a sign test that 
explicitly sets a condition code bit after an arithmetic 
operation. In the Sandblaster architecture there are a few 
secondary operations such as jump conditional. There are 
also compound operations such as compare and branch that 
are encoded in the same operation code. 
 The architecture is comprised of a collection of fixed-
length datatypes. Table 3 summarizes the datatypes directly 
supported by the SB2 architecture. The data length is 
specified in an instruction by the operation code and the 
working store that is used. Operations are provided for 
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integer, logical, and fixed-point datatypes. It should also be 
noted that floating point is supported from a C-level 
language viewpoint but it is emulated with native data 
types. Each instruction specifies the type of its operands. 
 The term “fixed point number” has different meanings 
depending upon the domain of discussion. Computer 
architects use the term generally to include any number that 
has the radix point in a fixed position. This would include 
all integer types (unsigned and 2’s complement integers) 
where the position of the radix point is to the right of the 
digits, but excludes floating-point numbers.  
 From the computer architect’s viewpoint, the position 
of the radix point does not affect the terminology, as long as 
it is in a fixed position. However, a Digital Signal 
Processing (DSP) use of the term implies a specific choice 
of radix point with the position between the most significant 
bit and the next most significant bit. DSP fixed-point 
numbers are typically  2’s complement encoded with an 
interpreted range of [-1 to 1). This alone does not create a 
conflict in terminology. However, in common DSP usage, 
operations on this type are implied to “saturate” to the 
largest or smallest representable values. This complicates 
mathematics because the arithmetic is non-associative. In 
this paper we distinguish this by referring to DSP-style 
fixed point as a fractional type  (i.e. fx16, fx40).   
 
Type Example Instructions Notes 
Data Handling load vector & update 

load vector reversed 
 

Arithmetic add, sub, mpy, mac vector, mixed 
types, sat opt. 

Logical and, or, xor 
sompare, 
Shift 

no rotate 
 
sat opt. 

Synchronizatio
n 

load locked 
store conditional 

 

Transfer of 
Control 

jump (conditional) 
call 
branch eq || gt || lt 
Loop 

 

Power idle  
Special SB1 shuffle, select 

round, min/max 
count leading sign/zeros 
count trailing zeros 
thread_id 

 

Special SB2 FFT, Complex, FEC 
broadcast 
pack/unpack  
GF operations 

 

Table 4. Operations 
 

Table 4 lists the classes of operations with some 
representative examples. Data handling operations perform 
no arithmetic and includes register-to-register moves, loads 
from memory, etc. They provide a mechanism to move data 
around within the machine. Moves within the vector register 
file may be conditionally executed. Format transformation is 
accomplished by sign extending a byte or half word value. 
A round operation is also provided for precision reducing 
operations. 
 Arithmetic is provided for all datatypes. Operations are 
available for all scalar and vector types. Some mixed mode 
support such as multiply signed-unsigned is provided. 
Optionally results from certain operations may be saturated 
for proper “DSP” style execution. Particularly, saturation of 
dot-product-type operations in 4-element vector form 
produces results guaranteed to be equivalent to serial 
execution of the operations with saturation after each 
operation. Thus, with a saturating dot product, four 16-bit 
elements are multiplied, saturated, added, and then saturated 
again as if they were scalars. Notably, the 16-element 
saturating vector dot-product-type operations in Sandblaster 
2.0 do not follow this convention but instead maintain 
maximum precision at each intermediate stage in the 
computation. Note that the 4-element saturating form is still 
available in the SB2 architecture.  
 Logical operations are provided for And, Or, and 
Exclusive-or functions. Vector versions of these are also 
available including a vector nand. Additionally, vector 
compare operations set a mask register which can be used to 
select between elements of a vector. Shift operations are 
provided both in logical and saturating form.  
 Synchronization is performed with load locked and 
store conditional operations. From these basic primitives 
many conventional software synchronizations may be 
constructed including semaphores. 
 Transfer of control is typically accomplished by a jump 
operation which may be dependent upon a condition or a 
compare and branch compound operation which first 
performs the comparison and then determines if a branch is 
to be taken. A call instruction is provided with automatic 
saving of the instruction address register. For many DSP (or 
streaming) applications it is desirable to loop a number of 
times on the same set of operations. If scalar architectures 
are used the number of scalar names in conjunction with 
typically visible pipelines precludes the usefulness of 
looping type operations. A vector architecture with 
transparent pipelines allows complete reuse of names. 
 Figure 2 shows an example of a name saving 
instruction sequence. Here a single compound instruction 
with three compound operations for SB1 is shown. The first 
compound operation, lvu, loads the vector register vr0 with 
four 16-bit elements and updates the address pointer r3 to the 
next element. The vmulreds operation reads four fractional 
16-bit elements from vr0, multiplies each element by itself, 
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saturates each product, adds all four saturated products plus 
an accumulator register, ac0, with saturation after each 
addition, and stores the result back in ac0. 
 

L0: lvu %vr0, %r3, 8 
||  vmulreds %ac0,%vr0,%vr0,%ac0 
||  loop %lc0,L0 

Figure 2.  SB1 Sum of Squares Inner Loop 

The equivalent code in SB2 that performs 16 multiplies per 
compound instruction is shown in Figure 3. The first 
compound operation, lru, loads the vector register vr0 with 
sixteen 16-bit elements and updates the address pointer r3 to 
the next element. The rmulreds operation reads four fixed 
point (fractional) 16-bit elements from vr0, multiplies each 
element by itself, adds all sixteen products plus an 
accumulator register, ac0, saturates the result and stores it 
back into ac0. 
 

L0: lru %vr0, %r3, 32 
||  rmulreds %ac0,%vr0,%vr0,%ac0 
||  loop %lc0,L0 

Figure 3.  SB2 Sum of Squares Inner Loop 

In addition to traditional operations, a number of specialized 
operations are provided. Some are application specific while  
others are the result of microarchitectural features. Support 
for multithreading is provided by allowing an instruction 
stream to determine what thread it is executing in by 
accessing a thread id register. This allows fast interruption 
between independent instruction streams. Additionally, an 
operating system may disable execution of specific 
hardware threads by executing an idle instruction. This 
turns off (if an implementation supports it) all execution 
within a hardware thread. Significant power savings can be 
achieved using this mechanism. 
 As mentioned in the Section 1, certain operations are 
difficult to execute in software when the data rates are very 
high. The SB2 architecture provides application specific 
instructions for FFTs, Galois Field arithmetic, and error 
correction such as Viterbi, turbo, and LDPC codes. Also, 
since the vector path is 16-elements wide there is now direct 
support for broadcasting of a scalar to all vector 
computations and support for a much richer class of 
permutations and shuffles. Within the 16-element vector 
unit, a native 32-bit vector element and complex arithmetic 
are also supported. 

2.5 Instruction Execution 

The SB1 architecture increments the instruction address by 
eight bytes each cycle. Three operation codes of 21-bits 
each are grouped together in the instruction format and 

issue as a single 64-bit compound instruction. The address 
where the next instruction resides (called its location) is 
always an 8-byte linear sequence arranged in a vector. 
In the SB2 architecture the leftmost bit of the instruction 
format now specifies whether the three operation codes are 
issued in serial fashion or parallel fashion (as in SB1). 
However, all branch targets must still be 8-byte aligned. 
 

3.  RESULTS 
 
The architectural changes have added about 140 additional 
instructions to the base Sandblaster 1.0 architecture. The 
impact is significantly reduced instruction counts on 
communications and multimedia codes. Basic vector 
performance is enhanced by a factor of four through parallel 
operations on sets of 16 elements. An improved shuffle 
network may improve performance further. The execution 
time of error correction and other application specific codes 
may be reduced by much more than an order of magnitude.  
 While we have not discussed microarchitectural 
performance, it is anticipated that chip implementations 
built using the Sandblaster 2.0 architecture will execute at 
about the same clock frequency as the SB3011.  
 

4. CONCLUSION 
 
We have introduced the Sandblaster 2.0 architecture which 
builds upon the Sandblaster 1.0 architecture. The new 
architecture is object code compatible with the original 
architecture and provides new operations to enable software 
execution of future high speed wireless communications 
systems such as 802.16e, HSPA, and LTE. 
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