
METHODS AND APPROACHES FOR ABSTRACTION OF HARDWARE
DEPENDENCIES IN SOFTWARE RADIOS

Victor Giddings
Objective Interface Systems,

Herndon, VA
+1 (703) 295-6500

victor.giddings@ois.com

Thomas Kacpura
ASRC Aerospace,

NASA Glenn Research Center,
Cleveland, OH

+1 (216) 433-6830
thomas.j.kacpura@nasa.gov

Vincent J. Kovarik, Jr.
Harris Corporation,

Melbourne, FL
+1 (321) 984-5631

vkovarik@harris.com

Abstract

This paper explores abstraction types and levels within
the hybrid processor environment of the software radio
in the context of NASA deployment of software radio sys-
tems. The premise is that abstraction of hardware is more
complex than a layer between the drivers and Board Sup-
port Package (BSP) for a specific hardware element and
the operating system. Due to the power constraints im-
posed by space flight, many waveforms implementation are
driven towards Field Programmable Gate Array (FPGA)
and Digital Signal Processor (DSP) implementations. Con-
sequently, hardware abstraction techniques and compo-
nents must be applied to these processors as well. Further-
more, abstraction approaches must also be integrated with
the safety and reliability requirements associated with hu-
man space flight. Recent advances in commercially avail-
able software will be discussed. The paper will close with
a summary of the current landscape and technology areas
that require further research.

1. Introduction

Waveform portability has been one of the central
themes driving the development of software radios. The
ability to add or change functionality of a radio system
after it is deployed is a core capability cited for software
radio systems. However, experience has been that port-
ing or development of new capabilities and waveforms for
a given radio platform is not as straightforward as origi-
nally envisioned. A key element of the portability problem
is the fact that, although many software radio developers
and integrators assume there is some Hardware Abstrac-
tion Layer (HAL) that insulates the functional waveform

software from the underlying hardware, the focus of this
HAL has been between the software elements on the Gen-
eral Purpose Processor (GPP) and other hardware elements,
This paper asserts that the problem lies in the fact that the
HAL concept mnust be applied to all processing elements
within a typical software radio, especially the signal pro-
cessing elements, if waveform porting cost is to be reduced.

1.1. Hardware Abstraction Layers

Hardware abstraction layers are not a new concept. As
the evolution of operating systems progressed from early
custom implementations, common tasks and responsibili-
ties of the operating system (e.g. process scheduling, mem-
ory management, I/O control, etc.) migrated to a high-level
programming language implementation independent of the
underlying hardware. Of course, the operating system still
was required to execute on each deployed hardware plat-
form, resulting in the evolution of an intermediate layer that
provided a well-known set of operating system interfaces to
a range of physical devices with custom drivers that inter-
acted with the hardware.

This early abstraction of hardware dependencies away
from the core functions of the operating system was the
precursor to the HAL in modern operating systems. One
simple but very versatile and useful abstraction was the I/O
stream made popular by the UNIX operating system. This
simple abstraction provided a simple byte stream interface
to reading or writing bytes to an I/O device. This abstrac-
tion is applicable to a file, a terminal, a keyboard, and just
about any other device.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



Figure 1. Control and Data Plane Hardware Abstrac-
tions Layers

1.2. Software Defined Radio

Although the hardware abstraction layer is a common
approach for interfaces to physical devices, there are other
applications for this paradigm. One such example is the
socket. Using the same stream abstraction, the socket pro-
vides a simple interface for sending data to or from another
program. The program may be on the same machine or it
may be remotely located and accessed over a network.

This simple concept underlies the basic I/O path of data
within a software defined radio. As processing components
are interconnected, an end-to-end data path is constructed.
This is analogous to the socket concept. Thus there are
two perspectives of hardware abstraction within an Soft-
ware Defined Radio (SDR), control plane and data plane.
This is illustrated in Figure 1.

There is a subtle distinction between the two abstrac-
tion layers, however. In the case of the control plane, the
interaction through the abstraction layer tends to be more
like an Application Programmer Interface (API) type of in-
terface. That is, a program or application issues a function
call to the device abstracted by the HAL. However, in the
data plane, the interface tends to behave more like a flow
of data between functional components with no dependen-
cies other than propagating the packet of data to the next
components for processing when the current component is
completed.

The abstraction of hardware becomes more complex
as multiple processor types are introduced, e.g. Field
Programmable Gate Array (FPGA) and Digital Signal
Processor (DSP) processors. The problems of insufficient
hardware abstraction was a significant hindrance to wave-

form porting. The impact of the not abstracting underly-
ing hardware architecture on waveform portability was dis-
cussed by Kovarik [1] and lead to the development of the
Modem Hardware Abstraction Layer (MHAL) [2] by the
Joint Tactical Radio System (JTRS) Joint Program Execu-
tive Office (JPEO)

There are a number of constraints that drive the design
of an SDR for space deployment. The following section
provides and overview of some of the more important con-
straints and issues with deployment of systems in space.

2. Space Constraints

There are a variety of issues which make the space
case unique. An effective architecture must address each
of these issues.

Mitigating factors that limit the performance of soft-
ware defined radios for NASA are the required use of radia-
tion hardened components for in-space use. The transceiver
unit is required to effectively operate, for a mission-specific
duration, in the radiation environment to meet the mission
objectives. This includes elimination or mitigation of long
and short term radiation effects (i.e. TID and SEU), per-
formed at the device and/or system level. The cumulative
long-term total ionizing radiation dose of the devices can
cause permanent degradation or failure. A single event up-
set can occur when where sufficient energy has been de-
posited to change the state of a device, such as a bit flip
in a memory device. The levels of radiation expected are
orbit/mission specific.

The transceiver shall utilize components that are able
to survive the temperature extremes of this environment. In
addition, the unit shall utilize components and construction
techniques that are able to survive the vibration environ-
ment subjected during launch.

A major challenge associated with the use of soft-
ware defined radios is the verification of the software and
firmware. While the inherent flexibility allows a radio to
be reprogrammed for a new or perhaps unanticipated use,
verification of this capability along with some resumption
of the nominal operating mode will be required for accep-
tance. A basic keep alive mode, perhaps in hardware only,
may be required if all other functions fail.

Another challenge is to establish an open architecture
that manufactures can build to considering the small num-
ber of radios required by NASA for the various missions.
The architecture must balance using an appropriate level
of accepted standards and practices, versus allowing the
appropriate customization to meet mission unique require-
ments inevitable for space missions. Also, the architecture

2 of 6

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



must support long development durations.

2.1. Processors

Today there are a variety of digital signal processing
devices, including: application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), digital
signal processors (DSPs), and general purpose processors
(GPPs). Each processor type has advantages and disad-
vantages for space transceiver applications. A GPP offers
the most flexibility, but runs the slowest. ASICs, custom
designed chips for specific processing functions, offer the
greatest speed and lowest power requirements, but are lim-
ited in predetermined flexibility. FPGAs have features and
capabilities that are between the GPPs and ASICs in terms
of power consumption, data processing speeds, and recon-
figuration capability. The optimal design may use more
than one processor type, using the most appropriate com-
ponent for the various radio stages/functions. As data rates
and frequencies increase, more compromises need to be
made to balance requirements.

2.2. Size, Weight, and Power (SWaP) Issues

The Space Telecommunications Radio Systems
(STRS) [3] architecture shall consider limitations imposed
by spacecraft mass, power, volume, and radiation environ-
ments. The transceiver hardware size, weight and power
requirements are required to conform to the constraints
of the host platform. Many NASA space applications
have very limited resources with respect to volume, mass,
and power. The transceiver must meet the operational
objectives within these available spacecraft resources.

The increased power to provide flexibility needs to
be weighed carefully against the power available from the
spacecraft. This trade affects both the architecture design
and the radio implementation for a specific mission.

3. Space SDR Architectures

This section investigates potential architectures for
space-base software radios. As might be expected, the se-
vere weight and power constraints imposed by space de-
ployment are significant drivers in the hardware and soft-
ware elements of an integrated SDR.

The STRS, shown in figure 2, is an open architecture
for NASA space based radios . This architecture provides
a common, consistent radio framework to develop, qual-
ify, operate and maintain complex reconfigurable and re-
programmable radio systems. This architecture standard
provides a detailed description and set of rules for the archi-

Figure 2. STRS Software Radio Architecture

tecture, focusing on describing the key architecture compo-
nents and subsystems through their functionality and inter-
faces for both the hardware and the software architecture
including waveform applications.

The architecture must accommodate a range of recon-
figurable processing technologies. The waveform devel-
oper has the option of allocating the waveform application
to execute in any of the various processors, or even dis-
tributing portions of the application in several of the pro-
cessors. The waveform developer can make this allocation
choice depending upon the waveform requirements and the
capabilities of the platform where this application is run.

3.1. Hardware

Key trades of using software defined radio for space
missions need to be weighed against the some of the neg-
ative issues of reconfigurable radios. Changes in operation
need to be carefully considered and executed so that the op-
eration is not compromised. If the radio is changed to an
unrecoverable state, then command and control of a space
platform would be eliminated, and the spacecraft could be
considered lost. The resources on a spacecraft are usually
very limited and tightly controlled, and if extra power is
required for a reconfigurable radio compared to a standard
radio, and not all the features used during operation, then
some of the advantages will be negated.

Another issue is the reconfigurability versus power
consumption trade. The more flexibility radios have a
higher reliance on general purpose processors, and these
use more power than the radio designed with ASIC or FP-
GAs, which are less flexible. Use of these components
requires that flexibility be a design parameter and consid-

3 of 6

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



ered as the radio is designed. This is compounded by the
requirement to use electronic components suitable for the
space environment, which is generally significantly slower
than state-of-the-art commercial off the shelf (COTS) hard-
ware used for terrestrial radios.

Currently reconfigurable signal processing is primarily
performed in specialized signal processing hardware for the
frequencies and data rates used in NASA space missions,
and this is expected to continue for some time. In addi-
tion to providing capability, specialized signal processing
is generally more power efficient than general purpose pro-
cessing. Likewise, the use of FPGA-based specialized sig-
nal processing is generally more power efficient than Dig-
ital Signal Processor (DSP) based signal processing. The
use of these devices support more power efficient radio im-
plementations, but make the FPGA firmware and DSP code
are tightly coupled to hardware and very difficult to port.

3.2. Infrastructure

The software infrastructure of a space SDR must
provide comprehensive management of the physical and
logical resources of the radio system while minimiz-
ing operating overhead and memory footprint. Current
SDR infrastructures such as the Software Communica-
tions Architecture (SCA) [4] and the Object Manage-
ment Group (OMG) Software Radio Platform Independent
Model (PIM) specification [5] support these goals, but cur-
rent implementations are much too large to meet the over-
head and memory footprint constraints.

The STRS, developed by National Air and Space
Administration (NASA), describes a software radio infras-
tructure approach that considers the limitations imposed by
space deployment. Within the STRS specification, the ab-
straction layer is addressed within the context of the GPP
environment and identified as a component within the sig-
nal processing element of the radio. However, this latter
reference to a HAL is not as clearly delineated as within
the GPP.

A major high-level STRS Architecture objective is to
enable waveform application portability. These waveform
applications are envisioned to use specialized signal pro-
cessing devices such as FPGAs for executing the waveform
applications. FPGAs contain components and capabilities
to manipulate and manage digital signals that have higher
processing capabilities and lower power consumption than
general purpose processors.

3.3. Waveforms

As noted by Selby [6], reuse of software components
incurs some cost. In the context of a software radio, the
complexity and corresponding reuse cost increases signif-
icantly. This is due, in large part, to the impacts due to
differences in the underlying hardware architecture and the
tight coupling between the waveform implementation and
the physical architecture, particularly in the case of FPGA
processors. In order to promote easier portability, the wave-
form implementation must be abstracted away from under-
lying hardware.

Key to enabling this abstraction is a well-defined hard-
ware abstraction layer within the digital signal processors.
The HAL within a FPGA will have a different perspective.
Since the FPGA implements a synchronous, parallel, data
flow machine, the HAL takes on less of an API perspective
and more of a processing node in a computational chain.

4. Data Transport Approaches

The data transport infrastructure engineering tradeoffs
for the data plane are different from the trade-offs for con-
trol plane. The main concerns for the data place are 1.)
for the incoming data, to ensure that the data is demodu-
lated from the radio signal and transferred to data output(s)
of the radio reliably, and 2) for the outgoing data, to ensure
that the data is properly transferred from the digital input(s)
and modulated onto the radio signal. In doing so, the in-
frastructure must meet the bandwidth requirements of their
respective channels while minimizing cost of the solution;
minimizing latency is usually a secondary concern. For the
control plane, bandwidth is usually a secondary concern;
latency, predictability of latency, and reliability of delivery
are the primary concerns.

4.1. Protocol v. Transport

There are also different layers within the data transport
infrastructure. An electrical signaling layer is concerned
with indicating the transfer of individual bits between com-
ponents and are implemented in a number of ways, e.g.,
by a bus or direct copper connection between components.
Overlying the raw signaling, there is a link protocol layer
that ensures reliability of the transmission and that the flow
of data from the source does not overrun the capability of
the destination. Finally, there is what is usually termed the
“middleware” layer that mediates data transfer between the
radio application components. The middleware layer fur-
ther mediates the impedance mismatch between the repre-
sentations of data by the radio application components and

4 of 6

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



the protocol layer used to transfer the data between opera-
tional components. Most middleware deals with structured
data, and so serialization and deserialization (serdes) are a
major concern along with reliable and timely delivery.

The engineering tradeoffs at the different layers differ.
Implementation of the signaling layer is driven by cost and
availability of the physical infrastructure required for the
transport. The concerns at the link protocol layer trade-
off complexity for reliability, since complexity drives the
cost of the required hardware infrastructure to support the
protocol. For example, the number of gates required to im-
plement a link protocol on an FPGA will drive the selection
of a connection to the FPGA. The tradeoffs at the middle-
ware layer are similar: complexity, and its attendant cost
in implementation resources, is traded against robustness.
However, the ease of use, i.e., the ability of a developer to
integrate a component with a middleware technology, along
with the longevity and availability of middleware imple-
mentations, affects the usefulness of the middleware tech-
nology.

4.2. Implementations

The processor class also affects the engineering trade-
offs for the different layers of data transports. Different
GPPs support a wide variety of data link transport protocols
and signaling interconnects. Significant bandwidth com-
munication onto or off of a GPP is usually achieved only
with dedicated peripheral devices that have direct access to
the memory of the processor. The same is true of DSPs. FP-
GAs offer a large number of pinouts that can be connected
to I/O peripherals, so the availability of a signaling and
data link transport is largely a matter of the availability of
“driver” logic blocks for the peripheral hardware. To com-
plement the throughput capabilities of FPGAs, dedicated
GPP I/O transports, such as HyperTransport, have been de-
veloped. The middleware situation, up until recently, was
not as uniform. High-performance small footprint Com-
mon Object Request Broker Architecture (CORBA) im-
plementations have a proven track record on GPPs. The
CORBA products have been targeted DSPs resulting in re-
ports of substantial speed improvements while maintaining
small footprints. The non-“vonNeumann architecture” of
FPGAs complicated the application of middleware princi-
pals to FPGAs. However, recently CORBA-based products
have been released that are targeted to the FPGAs used
in digital signaling applications. These products provide
a level of interoperability with other middleware products
that allow a degree of “technology transparency”. This
transparency allows systems to be initially developed or
prototyped as software-only components. Performance-

critical components can be migrated to higher-capability
technologies, DSPs or FPGAs, over the course of product
or product line life cycle.

4.3. Reuse and Abstraction

The software infrastructure of a space SDR must pro-
vide consistent data transports for both data plane and con-
trol plane traffic at multiple levels. This consistency pro-
vides the transparency that allows signal processing com-
ponents and other types of components to be targeted to
the hardware appropriate to the performance requirements
while meeting cost, SWaP, and space environment con-
straints for the particular SDR application. Further this
transparency preserves investments in component imple-
mentations in the face of requirements changes and tech-
nology advances. Current SDR infrastructures provide this
consistency, but only for the GPP-based components.

The HAL concept needs to raised in abstraction level
to accommodate not only consistency at the data signaling
and link transport level, but also accommodation of soft-
ware component interoperability regardless of hosting of
the software component on a GPP, a DSP, or FPGA. Stan-
dardization of a middleware technology such as CORBA
would seem feasible and would provide a consistent com-
ponent interconnection view across all components regard-
less of the implementation technology.

5. Summary

We have presented architectural approaches and trade-
offs for the development of a space-qualified SDRSDR.
In conjunction with the constraints imposed by space de-
ployment, waveform applications require power efficient
processing. In order to have portability of these applica-
tions, the abstraction of specialiized signal processing de-
vices must be addressed. There are two key perspectives to
the HAL concept, control and data, and that there is a fun-
damental difference in the types of interactions performed
through each of these interface planes.

6. Acronyms

API Application Programmer Interface

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPP General Purpose Processor

HAL Hardware Abstraction Layer
5 of 6

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



JTRS Joint Tactical Radio System

JPEO Joint Program Executive Office

MHAL Modem Hardware Abstraction Layer

NASA National Aeronautics and Space
Administration

OMG Object Management Group

PIM Platform Independent Model

SCA Software Communications Architecture

SDR Software Defined Radio

STRS Space Telecommunications Radio Systems

References

[1] V. Kovarik. The impact of hardware architecture on waveform
portability. In Software Defined Radio Forum Technical Confer-
ence, Orlando, FL, November 2006.

[2] Joint Program Executive Office (JPEO), Joint Tactical Radio Sys-
tem (JTRS), Space and Naval Warfare Systems Center, San Diego,
CA. Joint Tactical Radio System (JTRS) Standard Modem Hard-
ware Abstraction Layer Application Program Interface (API), ver-
sion 2.11.1 edition, May 2007.

[3] NASA, Glenn Research Center, Cleveland, OH. Space Telecommu-
nications Radio System (STRS) Architecture, version 1.01 edition,
December 2007.

[4] Joint Program Executive Office (JPEO), Joint Tactical Radio Sys-
tem (JTRS), Space and Naval Warfare Systems Center, San Diego,
CA. Software Communications Architecture Specification, version
2.2.2 edition, May 2006.

[5] Object Management Group. PIM and PSM for Software Radio
Components Specification, version 1.0 edition, 2007.

[6] R. Selby. Empirically analyzing software reuse in a production en-
vironment. In W. Tracz, editor, Software Reuse: Emerging Technol-
ogy, pages 176–189. IEEE Computer Society Press, 1988.

6 of 6

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved


	Home
	Search by Session
	Search by Author



