

BIOMETRICALLY ENHANCED SOFTWARE-DEFINED RADIOS*

Joseph P. Campbell, William M. Campbell, Douglas A. Jones, Scott M. Lewandowski,

Douglas A. Reynolds, Clifford J. Weinstein
MIT Lincoln Laboratory

Lexington, Massachusetts 02420-9185 USA
{jpc, wcampbell, daj, scl, dar, cjw}@ll.mit.edu

ABSTRACT

Software-defined radios and cognitive radios offer
tremendous promise, while having great need for user
authentication. Authenticating users is essential to ensuring
authorized access and actions in private and secure
communications networks. User authentication for
software-defined radios and cognitive radios is our focus
here. We present various means of authenticating users to
their radios and networks, authentication architectures, and
the complementary combination of authenticators and
architectures. Although devices can be strongly
authenticated (e.g., cryptographically), reliably
authenticating users is a challenge. To meet this challenge,
we capitalize on new forms of user authentication combined
with new authentication architectures to support features
such as continuous user authentication and varying levels of
trust-based authentication. We generalize biometrics to
include recognizing user behaviors and use them in concert
with knowledge- and token-based authenticators. An
integrated approach to user authentication and user
authentication architectures is presented here to enhance
trusted radio communications networks.

1. INTRODUCTION

Software-defined radios (SDR) and cognitive radios (CR)
[1] are expected to provide powerful new capabilities. To
realize this promise, these radios and their networks will
need user authentication. Authenticating users ensures that
only authorized personnel have access to their radios and
networks. Furthermore, sensitive radio-operations and
access to resources will be limited to authorized personnel.
 Users can be authenticated based on something they
know, have, do and/or are. Recognition based upon
something you are is conventionally known as biometrics—

automatically recognizing a person using distinguishing
traits. We generalize biometrics to include recognizing user
behaviors, which can be used with conventional knowledge-
and token-based authenticators. Some of these
authenticators naturally operate continuously and
transparently to the user.
 The authentication architecture supports user
authentication by communicating authentication information
between various processes and by orchestrating the overall
authentication processes. We generalize conventional
authentication architectures to support varying levels of
authentication or trust and continuous user authentication.
 In the following sections, we develop means for
authenticating users, a compatible architecture, and we
discuss their combination in SDR and CR.

2. USER AUTHENTICATION

We present various means of user authentication, introduce
generalized biometrics, and illustrate continuous and
confidence-based user authentication. As shown in Figure 1,
the four pillars of user authentication are: knowledge (e.g.,
PIN or password), tokens (e.g., key or badge), behaviors
(e.g., usage patterns or outcomes), and traits (e.g., voice or

fingerprint). The combination of all four pillars provides the
strongest user authentication. Biometrics authenticates
users, as opposed to something they know (which can be
forgotten or compromised) or possess (which can be lost or
stolen). Unlike knowledge- and token-based authenticators,
however, the inability of users to transfer biometrics can

Are

Strongest
authentication

HaveKnow

Do AreAre

Strongest
authentication

HaveHaveKnowKnow

DoDo

Figure 1: The four pillars of user authentication.

*This work was sponsored by the Defense Advanced Research
Projects Agency under Air Force contract F19628-00-C-0002.
Opinions, interpretations, conclusions, and recommendations are
those of the authors and are not necessarily endorsed by the United
States Government.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

lead to difficulties, e.g., emergency transfer of operation of
a radio with biometric access control to an unenrolled user.
Knowledge- and token-based authenticators can be used to
authenticate users in these situations to solve this difficulty.
 Popular biometrics include voice, face, fingerprint, and
iris (see http://www.biometrics.org/ for others). Voice and
face biometrics (possibly in combination) are well suited to
radios that already incorporate microphones and cameras.
Some biometrics lend themselves to continuous user
authentication (e.g., to guard against lost or captured radios)
and varying levels of trust. For example, voice verification
can be used to continuously authenticate a user while they
are talking (this can be useful if the voice quality makes it
difficult for the interlocutor to determine a change in
operators). Figure 2 shows an example of an authentication
process over time with varying levels of trust [2]. This
example begins in a state of provisional trust and, over time,
proceeds in continued states of provisional trust and then to
a trusted or untrusted state. While in a state of provisional
trust, benign operations can be performed, whereas sensitive
operations would require a trusted state.

Biometrics can provide user conveniences, such as
recalling preferences, biometric logins, and screen locks,
which can also guard against compromised equipment
losses (e.g., disable a radio that is left behind). We
generalize conventional biometrics by learning the users and
recognizing their distinctive behaviors.

Behavior-based user authentication recognizes users via
their actions, interests, tendencies, preferences, and other
patterns. Examples of distinctive behaviors include 1) how a
user does something (e.g., speed and pattern of typing,
stylus angle and intensity, use of menus vs. keyboard
shortcuts), 2) what a user does (e.g., patterns of applications
use, program features used, patterns of collaboration), and
3) what a user causes to happen (e.g., sequences of system
calls, patterns of resource access). These behaviors not only
include a user’s local actions, but also network interactions
and outcomes. Behavior-based user authentication, like
voice verification, has minimal adverse impact on mission.
The authentication is inherent and transparent; there is
continuous mode operation and modest resource utilization;

and user acceptance is likely to be high. Monitoring these
behaviors can be combined with situational awareness to
fuse multiple factors into the authentication process.

A cognitive approach allows for many interesting
possibilities. First, the threshold to reach the trusted state of
user authentication can be adapted based upon situational,
environmental, and mission awareness and the risk of the
requested operation (e.g., benign volume adjustment to
sensitive security operations). Second, authentication can be
performed over time combining available information—
voice communication, mouse/stylus movement, dialogue
structure, etc.

Some issues and questions in biometric deployments
are 1) remote vs. distributed vs. network enrollment and
verification, 2) where are user models created and stored, 3)
how are models maintained and updated, 4) how is
enrollment conducted, 5) how are models bound to users, 6)
what is the tolerable verification time or rate, 7) how are
models of new users distributed and their integrity assured,
8) are there accuracy or policy requirements, and 9) what is
the architecture to support the biometrics.

 The integration of the user authentication pillars
with an authentication architecture for software-defined
radios and networks is explored and discussed next.

Trusted State
Required for sensitive operations

Untrusted State
Interrupt interaction

Provisional Trust
Continue interaction, gather
behavioral & voice samples

time

trust

time

trust

Figure 2: Continuous user authentication and trust.

3. ARCHITECTURE

Reconfigurable software-defined radio (SDR)
implementations must be based on an architecture that
supports many different functions in addition to the core
functionality of providing adaptive and dynamic
communication services. Some of these functions include:

• Discovery, negotiation and adaptation. It must
be possible to locate radios and services, and to
determine which users are controlling each radio.
Clients also need to be able to negotiate for access
to services and limited resources and to specify the
quality of service (QoS) required to adequately
support the current task. The platform as a whole
must adapt to status changes and faults, both
malicious and benign.

• Management. System administrators must be able
to manage terminals, services, applications, users
and their profiles, and security information (such
as credentials and privileges) from a central
location. Users and system administrators may
need to manage some of these entities locally as
well.

• Upgrades and configuration management. It
must be possible to reconfigure entire networks
and individual radios by changing settings and by
adding/modifying functionality using
downloadable software modules. Configuration
changes must be performed in a controlled and
secure manner.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

http://www.biometrics.org/

• Security. Radios and networks need to mutually
authenticate, and users need to authenticate to
radios. Radios must also “authenticate” to users –
users must have confidence that the radio they are
using is theirs, and that is has not been physically
compromised or tampered with; however, we do
not address the authentication of radios to users
since the necessary assurances are generally
provided through non-cyber means, such as tamper
resistant hardware. Since all of the authentication
relationships are transitive, these basic forms of
authentication implicitly authenticate users to
networks and the services that reside on those
networks, and provide radio to radio and user to
user authentication. In addition to authentication,
resource access must be managed, and data
confidentiality and integrity must be ensured.

In a real-world SDR implementation, these functions will
not necessarily be implemented as discrete components that
have a well-defined location in the instantiation of the SDR
architecture. Rather, components responsible for
implementing these functions can be distributed throughout
the network and across the radios relying on the network; in
fact, the implementation of these functions can be
partitioned among multiple components that cooperate from
distributed locations to provide the required functionality. A
key difference between SDR architectures and the standard
architectures used by wired computing hosts is that an SDR
network has true functionality and can contribute to all of
these functions, whereas a traditional wired network
impacts only discovery and negotiation.1
 While all of these functions are important and impact
the overall SDR architecture, here we focus on the
authentication-related aspects of the architecture. Note that
many of the functions listed impact authentication in one
way or another. For example, devices and networks must
negotiate to learn requirements and supported protocols,
users and their tokens must be managed, and new security
functionality may be dynamically added to an in-use SDR
system.

3.1. Network Security Architecture

Whereas the network architecture is of paramount
importance for enabling general SDR functionality, the
network itself plays a relatively small role in the realization
of secure authentication. However, it is likely that the
network would play a major role in implementing related

1 Some networks contribute to security through the use of
hardware link encryptors, but these architectures are generally
used only for networks with special security requirements since the
deployment and management costs of software-based or per-host
security (e.g., through encryption) outweigh the incremental
benefits gained from integrating security with the network
infrastructure.

functionality, such as user and privilege management and
providing data confidentiality.
 The network architecture directly supports the function
of authenticating radios and networks. Radios and networks
must mutually authenticate in order to form a trusted-base
on which other levels of authentication can be layered and
to ensure that the most basic network services (such as
resource discovery) are accessed only by parties that are
trusted at least nominally. It is especially important that the
user not be part of the lowest level of authentication since
user authentication relies on services that must be afforded
at least a basic level of protection; since the user is not yet
authenticated when these services are used, trust must come
from the authentication of other entities.
 For networks with closed user communities, such as
those found in certain military environments, this
requirement can be met implicitly through the use of shared
symmetric keys. Using this approach, each authorized
device is seeded with a common key and the network also
has knowledge of this key. Senders encrypt the data they
send using their key, and receivers attempt to decrypt it
using their key. If the decryption yields a well-formed
message, then the data must have been encrypted and
decrypted using the same key, which implies that the data
was transmitted by an authorized party. While this approach
has limitations (for example, it creates the opportunity for
an adversary to use certain styles of denial-of-service
attacks, and it does not provide per-client data
confidentiality), it is a simple and efficient solution to
authenticating closed user communities. A significant
problem with this approach is that it is impossible to
securely remove a client from the group of trusted clients
using in-band communication. Removing a client requires
distributing a new key to the other clients (that will remain
trusted), which cannot be done in-band without the key
being accessible to the client that is no longer trusted; using
the shared symmetric key approach, rekeying requires an
out-of-band channel (such as physical access) to each
machine that is to remain trusted – a daunting proposition in
large communities. Although it is not possible to remove an
individual client from the network with this single-
community approach, a client can be designated as
untrusted. However, that does not prevent the client from
intercepting all traffic on the network, nor does it prevent
the untrusted host from masquerading as a trusted host.
 On open networks with diverse user communities, it is
not feasible to use a shared symmetric key approach. In
these environments, approaches relying on public-key
encryption can be used. With such schemes, the network
has a public/private key pair, and each client has a unique
public/private key pair. When the network wants to send
data to a client, it encodes it using the client’s public key,
and the client can then decode it with its private key.
Communication from a client to the network occurs in a
similar manner. Client-to-client communication occurs

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

through the network; that is, the sender encrypts the data
using the network’s public key sends the encrypted data to
the network along with the necessary addressing
information. The network then decrypts the data, encrypts it
using the receiver’s public key, and forwards the encrypted
data to the receiver, which can decrypt it using its private
key. Note that this approach assumes that the network can
be trusted to route messages appropriately, since there is no
direct sender-to-receiver authentication. A disadvantage of
this approach is that secure broadcast is not possible, since
clients do not share any common secrets. This requires
broadcast to be implemented as a series of point-to-point
communications, which wastes bandwidth and power, since
multiple physical sends are required when one logical send
would suffice.2 The key advantages of this approach are that
clients do not need to trust each other and that a single client
can easily be removed from the pool of trusted hosts, simply
by invalidating its public key (a task the network is well-
positioned to handle). The public-key encryption approach
can also be used for closed communities.

Figure 3: Notional radio security architecture.

 Although beyond the scope of this discussion, note that
these encryption-based authentication schemes also provide
a degree of data confidentiality and integrity that may be
adequate for many applications.

3.2. Radio Security Architecture
 3.2.1. Secure Communication Interface
The radio plays a greater role than the network in the
realization of end-to-end system security. This is largely due
to the fact that the radio is responsible for authentication on
both the network and user sides. A notional radio security
architecture is depicted in Figure 3. Note that this
architecture is not meant for direct instantiation; rather, it
shows the logical structure of a system built using our
cognitive authentication approach.

The overall security of the SDR platform is predicated on
the security of the data flowing to and from the radio. As
such, protecting information in transit is critical to meeting
the system security needs. Furthermore, as discussed earlier,
secure communication can be used to perform the
authentication that is required between the radio and the
network. The implementation of this secure communication
channel is beyond the scope of this paper since the details of
its implementation are not pertinent to user-level
authentication, so long as the expected functionality is
provided.

 The high-level security-related components of the SDR
security architecture we propose are: a secure
communication interface; a biometric subsystem, comprised
of one or more biometric sensor and biometric processor
pairs; an authentication API; an authentication user
interface; a security manager; and a security API. These
components collaborate to provide end-to-end security
between all of the participating entities in the overall
system, including the network, radio, applications and
services, and users.

3.2.2. Biometric Sensors
Section 2 discussed a number of biometric approaches to
user authentication. These approaches all require some form
of hardware input device to gather the required information
about the user to be authenticated. For example, fingerprint
recognition requires a fingerprint scanner, user voice
recognition requires a microphone, and user behavior
monitoring requires a traditional user input device (e.g., a
keyboard or mouse). These hardware devices must be an
integral part of the SDR platform and must communicate
with their software counterparts over a secure channel.
Many of these devices are high-bandwidth (although the
utilization is frequently very bursty) so the channel
connecting the hardware and software must be capable of
supporting the data transfer requirements without an undue
performance impact on the device’s core functionality.

 The sections that follow provide details pertinent to
each component of the security architecture, as well as to
the applications, which are a consumer of the services
offered by these components.

2 If the network provides a broadcast service instead of requiring
clients to generate the multiple point-to-point messages, bandwidth
is still wasted but the power-consumption issue is diminished in
severity since the network infrastructure itself it usually not power-
constrained.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

3.2.3. Biometric Processors
Once data has been gathered from a biometric sensor, it
must be processed to determine user identity (or other user
characteristics that the sensor has been designed to assess).
Such processing can occur either in specialized hardware or
in software. Although the use of specialized hardware
provides the advantages of increased tamper-proofing and
higher performance, the complexity of managing updates
and modifications to the functionality of the hardware often
outweighs these benefits. Given that the overall security of
the radios and the services provided by radios and the
network is built on other software components,
implementing the biometric processor in software does not
fundamentally diminish the overall security of the system.
Although not shown in Figure 3, most biometric processors
require access to a database that contains information
required to authenticate users, such as biometric models or
templates, profiles, or logs of past behavior.

3.2.4. Authentication API
Once the biometric processor has assessed the identity of
the user, it needs to inform the operating system so that the
appropriate resource use policy can be enforced by the
operating system; this is done using an authorization API.
Whereas this interface is quite simple in most operating
systems, a system supporting the robust functionality we
desire to exploit in our cognitive system must extend
traditional authentication APIs by making authentication
continuous and by providing a confidence measure.
 Modern operating systems perform authentication in a
discrete and binary manner. A user authenticates once, at
the beginning of his session, and remains authenticated until
the session is terminated, or an intervening event occurs,
such as the activation of a screensaver. In addition, user
authentication is binary; there are only two outcomes to a
user authentication request – either authentication succeeds
and the user receives the full rights and privileges
associated with his identity, or the authentication fails and
the user receives no privileges. Our cognitive approach to
authentication, in contrast, authenticates a user throughout
his session, either on a periodic basis, or in direct response
to a security-critical user request or an external stimulus that
indicates a possible compromise of security. Further, each
time a user is authenticated, a confidence metric is assigned
to the outcome authentication event. This measure of
confidence can be used by an application to vary the
functionality afforded to a user depending on the confidence
of the authentication. For example, if the voice
authentication system is only 70% sure that a user is who he
claims to be, the system may restrict that user from using
the most sensitive functions on the radio until a more solid
authentication can be performed, perhaps using a second
authentication factor.

3.2.5. Authentication User Interface
Throughout the authentication process, it may be necessary
to prompt the user for addition information or to take an
additional action. In addition, in some environments, the
user should be kept informed of his authentication status
(note that there are risks with disclosing information about
the authentication system; for example, an adversary could
learn a user’s identity by “shoulder surfing” or an adversary
who has gained control of a device could use the displayed
information to determine how the authentication system
operates in order to exploit it). This interface could be
integrated with the standard interface of the computing
platform, or it could be a standalone interface tailored for
authentication status reporting.

3.2.6. Security Manager
Once the user has been authenticated, the authentication
API reports the outcome to the security manager. The
security manager is responsible for maintaining a mapping
between operating system objects (e.g., files, processes,
sockets, etc.) and the privileges that each user can exercise
on those objects. One of our goals is to build atop COTS
operating systems; thus, we do not specify how the mapping
between objects and user privileges should be made or how
checks on these privileges should be performed before a
user is allowed to access a resource.
 However, both continuous authentication and
confidence-based authentication require modification to the
standard security subsystems found on common operating
systems. These modifications can be integrated with the
existing security subsystem, or can be added as a translation
layer that mediates between clients and the security system
(this could be done using software wrappers, for example).
Confidence-based authentication requires that privileges be
mapped to objects considering not only the authenticated
principal (i.e., user) but also the confidence of the
authentication. Thus, instead of maintaining {object,
principal, privileges} tuples, the operating system must
maintain {object, principal, confidence, privileges} tuples.
When the security system needs to determine the privileges
a principal has for a given object, it finds the tuple with the
highest confidence value below the user’s currently
assigned confidence level, which can vary throughout the
session. While this may seem to complicate privilege
management unduly, we do not believe this to be the case;
appropriate assignment of fine-grained privileges to certain
high-level objects (e.g., key data stores and applications)
implicitly impacts the privileges that a principal has for
dependent resources.
 The mechanics of implementing continuous
authentication are not terribly difficult, although it raises a
number of semantic questions we have not yet completely
explored. When a user’s authentication status changes, the
security manager is notified, and future resource access
requests will be made based on that information. For

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

example, a user could open a file for editing. When he does
so, the security subsystem verifies that the client has
permission to open, read, and write to the file, and,
assuming he does, it allows the operation to proceed – the
file is opened, the current contents are displayed, and the
user is allowed to edit the file. Suppose that while editing
the file, the user’s permission to write to the file is revoked.
Now, the user will be unable to save his work, which is a
suboptimal scenario and does not meet the user’s
expectations (he should not have been allowed to edit the
file if he cannot save his changes). This simple scenario is
illustrative of the challenges associated with dynamic
privileges. These difficulties could be dealt with gracefully
by applications that were written with consideration of the
possibility of dynamic privilege updates, but we want to run
existing applications on our SDR platform. Note that similar
situations can arise on systems that do not use continuous
authentication, since the privileges granted to a principal for
a given resource can be changed at any time, and most
systems respect the current privileges when making an
allow/deny decision on an action (instead of relying on the
privileges in effect when the object was opened for access).
However, the issues associated with dynamically changing
permissions are much more important when considered in
the context of our cognitive SDR platform because changes
in privilege are expected to be common, whereas they are
very uncommon in traditional operating environments.
 When a resource access fails due to inadequate
confidence in the authentication (as opposed to failing
because a principal is not authorized to access a resource),
the application should not be immediately notified of the
failure. Instead, the security manager should work to
establish the required credentials. Using the authentication
API, it can request stronger authentication of the user; this
may trigger an explicit request to the user via the
authentication interface. If the proper level of authentication
can be established, the resource access can proceed as
expected, transparent to the application. If the appropriate
confidence cannot be established, then the operation can be
failed (hopefully the application will handle the failure
gracefully, but this is not always the case, especially when
the application pre-asserts that certain privileges exist
before exercising them), or the system can attempt to
establish the required confidence after a suitable delay,
perhaps once external conditions change such that they are
more conducive to authentication.

3.2.7. Security API
Applications designed for the cognitive SDR platform can
be written to leverage the advanced functionality provided
by our continuous, confidence-based authentication. In
addition, they can improve overall system performance by
communicating their authentication needs so that the
platform does not expend resources providing a degree of
authentication not required and so that the platform can

work to ensure that the required authentication has been
performed by the time it is needed. For example, a device
may be configured to provide 100% confidence in
authentication using two factors, such as voice and typing
pattern. However, if no application being used demands the
extra confidence afforded by the voice authentication
system, then the microphone can be disabled and speech
data does not need to be processed, freeing memory and
CPU cycles for other tasks, as well as extending battery life.
The security API enables applications to express such
information to the security manager. The security API also
needs to interact with the secure communication subsystem
so that it can inform the security manager when the trust
relationship with the network has been broken.

3.2.8. Applications
Although our platform has been designed to accommodate
existing applications without modification, new applications
can be designed to leverage the capabilities exposed by the
security API to improve the user experience and to improve
overall system performance. We have not yet explored the
full set of these possibilities, but designing applications to
leverage this architecture is critical to its success.
 Legacy applications will automatically benefit from
continuous authentication, but will be completely unaware
of confidence-based authentication. Therefore, the platform
will need to define a confidence level at which the user is
considered authenticated, and any level of confidence below
that will cause the user to be considered completely
unauthenticated by legacy applications. Applications that
are aware of confidence-aware authentication, in contrast,
can enable functionality or access to data based on the
confidence in the user’s identity.

4. CONCLUSIONS AND IMPLICATIONS FOR CR

We presented an integrated approach to user authentication
and architecture to enhance trusted radio communications
networks. User authentication, via generalized biometrics,
can be combined with other authenticators to provide
continuous, flexible, and strong user authentication. This
biometrically enhanced authentication system approach can
be extended to become part of a cognitive radio system
which learns about users, situations, and surroundings and
takes appropriate proactive or reactive actions. The area of
learning emphasized here has been generalized biometric
authentication, where the users’ distinctive behaviors and
traits are learned and recognized. An advanced cognitive
radio will also learn about and take action based upon user
preferences, availability of network resources, and other
elements of the situation and surroundings.

5. REFERENCES
[1] J. Mitola & G. Maguire, “Cognitive Radios: Making Software Radios

More Personal,” IEEE Personal Communications magazine, Aug 99.
[2] T.J. Hazen, et al., “Integration of Speaker Recognition into

Conversational Spoken Dialogue Systems,” Proc. Eurospeech, 2003.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

