
Date: 30/09/2003
Page: 1

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

T

Flexible Protocol Stack Framework : 
Design, Validation and Performance

Tim Farnham1,  Thorsten Schöler2

SDR Forum Technical Conference November 2003

1 Toshiba Research Europe Ltd
2 Siemens AG

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 2

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TContents

• Introduction
• Terminal architecture
• Flexible protocol stack framework

– Design
– Validation
– Performance

• Conclusions

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 3

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

T

Re
co

nf
ig

ur
ab

le
 p

ro
to

co
l 

Re
co

nf
ig

ur
ab

le
 p

ro
to

co
l 

sta
ck

 a
rc

hi
te

ct
ur

e
sta

ck
 a

rc
hi

te
ct

ur
e

Reconfigurable hardwareReconfigurable hardware

Digital signal processing hardware

Custom hardware

Highly-optimised software (system / kernel)

Object-oriented software

Terminal architecture
ISO OSI level Implementation domain

Layer 7: Application

Layer 5: Session

Layer 6: Presentation

Layer 3: Network

Layer 4: Transport

Layer 1: Physical

Layer 2: Data Link Layer

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 4

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

T

Ad Hoc Networks

Reconfiguration Functions
(MIMM, MNSM etc.)

Middleware

Network

Link

Physical

Hardware

Network Centric Support for Reconfiguration

Application

Hardware

Reconfiguration Functions
(CMM, RSMM etc.)

Middleware

Transport
#1

Network
#1

Link

PHY
Baseband

Execution environment

Fl
ex

ib
le

 p
ro

to
co

l s
ta

ck

Reconfigurable Terminal

Service Discovery

Mode Selection

Software Download

Cellular Networks

Reconfiguration Functions
(MIMM, MNSM etc.)

Middleware

Network

Link

Physical

Hardware

CMM: Configuration Management Module
RSMM: Resource System Management Module
MIMM: Mode Identification and Mode Monitoring
MNSM: Mode Negotiation and Switching Module

Hardware Abstraction Layer

RF

Transport
#2

Network
#2

Transport
#n

Network
#n

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 5

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

T
Requirements and Solution Features for 

Flexible Protocol Stacks

• Platform Independence
– Multiple CPU / execution environment and language support

• High reliability / availability
– Fallback states, etc.
– Validation of Stack Configuration and Implementation

• Secure operation
– Mechanisms to prevent unauthorised interception, manipulation

• Multi-vendor sourcing
– Manufacturer, operator, service provider and third party
– Open interfaces

• Dynamic optimisation
– Depending on resource availability, execution environment and 

service requirements
– Mechanisms for active protocol stack reconfiguration

• Customisation and enhancement
– Mechanisms to allow incremental upgrading

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 6

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TContents

• Introduction
• Terminal architecture
• Flexible protocol stack framework

– Design
– Validation
– Performance

• Conclusions

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 7

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TState of the art in modular protocol stacks

ComposableComposable protocol stacksprotocol stacks
(run time)(run time)

Customisable protocol stacksCustomisable protocol stacks
(design time)(design time)

Layer α

Layer β

Layer γ

Library

Fr
am

ew
or

k

Terminal A Terminal B

Generic Protocol Stack Terminal B specific SWTerminal A specific SW

Terminal B Protocol StackTerminal A Protocol Stack

1

1 1

1

X-Kernel – Composable (at compile time) framework with configurable virtual protocol layers
OPtIMA – Java based, composable and (run-time) customisable framework with configurable active 
programming interfaces
DIMMA – C++ based, customisable framework which is derived from X-kernel framework

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 8

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TProtocol stack computation models

Process per protocolProcess per protocol Process per messageProcess per message

Thread
for

layer α

Thread
for

layer β

Thread
for

layer γ

Thread
for

message 1

Thread
for

message 2

Static code
layer α

Static code
layer β

Static code
layer γ

M
es

sa
ge

 1

M
es

sa
ge

 2

queue

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 9

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TProposed Flexible Protocol Stack Framework

INET

IRL

GPI

DGSAPDGSAPDGSAPGSAP

CMMgetBestMode
measurePerformance

resourceAllocation

getInformation

MNSM

MIMM

SDM

RSMM

addMode
CM GSAP

= Open 
Interfaces

attach/bind/connect

Middleware QoS 
Manager

Note : MIMM = Mode Identification and Monitoring Module (or Mode Identification and Monitoring), MNSM = Mode Negotiation and Switching 
Module (or Mode Switching Module), SDM = Software Download Module, RSMM = Resource System Management Module (or Resource 
Management System), GPI = Generic Protocol Interface, GSAP = Generic Service Access Point, CM-GSAP = Connection Management GSAP, 
CMM = Configuration Management Module, INET = Internet TCP/IP Stack, IRL = Intelligent Routing Layer.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 10

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TFramework Key Features

• Generic Protocol Interface (GPI)
– Language and platform independent
– Radio access technology independent

• Generic Service Access Points (GSAPs)
– Dynamically bound and rebound 
– Secure interaction between layer instances
– Extensible message data format
– Execution environment neutral

• Intelligent Routing Layer (IRL)
– Supporting dynamic mode selection

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 11

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TGeneric Protocol Stack Example

Packet Classification / 
Scheduling

Alternative Mode 
Detection / Monitoring

Encryption / decryption

Link Adaptation Performance
measurement

Compression / 
decompression

Association / 
registration Connection setup

Packet fragmentation /
reassembly

Medium Access Control (MAC) /
CRC Generation /

Scrambling / whitening

Radio PHY

-

= GPI

= GSAP

Key :

= Generic    
component

Packet Classification / 
Scheduling

Alternative Mode 
Detection / Monitoring

Encryption / decryption

Link Adaptation Performance
measurement

Compression / 
decompression

Association / 
registration Connection setup

Packet fragmentation /
reassembly

Medium Access Control (MAC) /
CRC Generation /

Scrambling / whitening

Radio PHY

-

= GPI

= GSAP

Key :

= Generic    
component

Packet Classification / 
Scheduling

Alternative Mode 
Detection / Monitoring

Encryption / decryption

Link Adaptation Performance
measurement

Compression / 
decompression

Association / 
registration Connection setup

Packet fragmentation /
reassembly

Medium Access Control (MAC) /

Radio PHY

-

= Generic 
Protocol Interface

= Generic Service 
Access Point

Key :

= Generic    
component

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 12

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TReconfiguration Management Interactions

Intelligent
Routing 
Layer       
(IRL)

Generic Protocol Interface

DGSAP
DGSAP

DGSAPGeneric Service
Access Point  

(GSAP)

Best Modes

Performance

Allocate Resource

Capabilities

Mode 
attributes

Connection 
Management 

GSAP

attach/bind/connect

Management 
interactions

• Open interfaces 
allow reconfiguration 
of protocol stack to 
exploit the 
capabilities of the 
platform execution 
environments and 
customisation and 
enhancement options 
within protocol  
software. 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 13

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TContents

• Introduction
• Terminal architecture
• Flexible protocol stack framework

– Design
– Validation
– Performance

• Conclusions

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 14

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TProtocol stack validation process

Mobile terminal

Layers: DummyLid l6, Dummy l5, CRC l4, Fragment l3,
Dummy l2, DummyBase l1

Channels: l6<->l5, l4<->l3, l3<->l2, l2<->l1
Param:

l6: default
l5: default
l4: crc_size=16
l3: max_frag_size=1024
l2: default
l1: mirror=true

Layers: DummyLid l6, Dummy l5, CRC l4, Fragment l3,
Dummy l2, DummyBase l1

Channels: l6<->l5, l4<->l3, l3<->l2, l2<->l1
Param:

l6: default
l5: default
l4: crc_size=16
l3: max_frag_size=1024
l2: default
l1: mirror=true

Syntax
check

Semantics
check

• Terminal-based validation
– On-line validation

• Check of protocol stack configuration
– Syntax and semantics

– Run-time validation
• In protected execution environment
• Software probes in protocol stack 

software
– Assertion-based

Configuration server

Network
simulation

Simulated
user

HW
simulation

• Network-based validation
– Off-line validation

• Virtual prototyping
– HW, SW, Network simulation
– Simulation of actual stack implementation
– Assertions for validation of software 

correctness

Mobile execution environment

Layer 1

Layer 2

Layer 3

SW probes

Framework

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 15

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TContents

• Introduction
• Terminal architecture
• Flexible protocol stack framework

– Design
– Validation
– Performance

• Conclusions

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 16

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TSecure Asynchronous Messaging

Logical
layer 1

Logical 
layer 2

Send(req)

Lookup Q

Post message to Q

Semaphore Lock – on thread / Q data

Lookup Q

validate message

Semaphore Lock – on thread / Q data

Semaphore Lock – on Q

Semaphore to signal data in Q

Semaphore Lock – on Q

Request  
operation

Send(res)

Lookup Q

Post message to Q

validate message

Semaphore Lock – on thread / Q data

Semaphore Lock – on Q

Semaphore to signal data in Q

Semaphore Lock – on Q

Semaphore Lock – on thread / Q data

Response 
operation

Retrieve message from Q

Retrieve message from Q

• Execution environments 
provide protection 
between logical protocol 
layer instances

• Interaction between 
instances authorised to 
prevent rogue behaviour

• Different steps to 
accommodate different 
execution environments 
and computational models

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 17

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TBenchmarking Platforms

Intel PXA 250 400MHz with Pocket PC 2002PXA WinCE

Intel PXA 250 400MHz with Linux 2.4.18PXA Linux

Intel StrongARM 200Mz with Enea OSE Delta RTOSSA OSE

Intel StrongARM 200MHz with Linux 2.4.18SA Linux

1GHz Intel P3 PC with Windows 2000PC Windows

1GHz Intel P3 PC with Linux 2.5.54PC Linux

TypeName

• Three hardware platforms and four different operating 
systems

• Java Virtual Machines also considered on Linux 
operating and Windows systems

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 18

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TBenchmark Results

1 10 100 1000 10000

Native (POSIX 1003.1b)
Native (System V)

Native (POSIX 1003.1b)

Native (System V)

Java Blackdown (POSIX)

Native (OSE messaging)

Linux Native (POSIX )

Linux Native (System V)

WIN CE 3.0 Native

Native (Windows)

Java (J2SE HotSpot)

Latency in microseconds

No Context Switch
1step
3step
5step

Java Blackdown (System V)
SA  Linux 

Java GCJ (GCC3.2 – System V)
Java GCJ (GCC3.2 – POSIX)

Java  (J2SE HotSpot – System V)

Java (J2SE HotSpot – POSIX)

PC Linux 

PC Windows

PXA 250

SA OSE

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 19

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TResults Summary

• Operating different logical layer instances in 
separate execution environments is attractive to 
exploit heterogeneous execution environments
– Native threads and processes
– JVM threads and processes

• The overhead in performing context switching 
must be considered when partitioning the 
protocol stack between execution environments

• Thread context switching and asynchronous 
messaging can actually be less computationally 
intensive than Java native calls using Java 
Native Interface (JNI)

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 20

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TResults Summary - continued

• Computationally intensive operations such as 
CRC calculation within a JVM protocol module 
can present much higher latency than thread or 
process messaging and native processing

• Memory requirements of Java implementation 
considerably higher than native implementation

• Performance variation across different platforms 
and computational models considerable 
– 1000 to 1 variation in benchmarks

• Context switching can be avoided if a single 
execution environment provides the necessary 
performance and security, but this will not 
generally be the case 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Date: 30/09/2003
Page: 21

Authors: Tim Farnham,
Thorsten Schöler

S
C O

U

TConclusions

• Flexible protocol stack framework based on open 
interfaces and generic service access points is 
an attractive approach  

• Different execution environments and 
computational models are also attractive to 
provide best use of resources 

• Validation can be most efficiently performed in a 
combined off-line, on-line and at run-time manner 

• Performance results indicate that secure 
asynchronous messaging is a viable and 
lightweight solution for supporting the framework

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved


