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ABSTRACT 
Multi-mode capabilities are becoming more important for 
mobile terminal and network devices and can exploit the 
flexibility provided by SDR technology. The reason for this 
is that the number of different radio access technologies is 
increasing with the growing popularity of Wireless Local 
Area Networks (WLANs) and increasing diversity of cellular 
radio access technologies with 2G, 2.5G, 3G and now even 
proposals for 4G air interfaces. Each of these standards is 
evolving at different rates with many optional enhancement 
features for providing different QoS, power efficiency and 
security properties, yielding a much higher software 
complexity than traditional single-mode protocol stack 
implementations. Therefore, a single inflexible protocol 
stack arrangement is no longer an attractive option for 
multi-mode support. A preferable solution is to allow 
protocol stack reconfiguration by software download (or 
peer-to-peer software exchange) to support upgrade, bug 
fixing and optimisation or customisation of the protocol 
stack to the context of the terminal whilst ensuring proper 
operation by thorough validation and supervision of 
software configurations. Furthermore, this paper 
investigates the performance of a proposed solution to this 
problem using platform and language independent support 
for generic interfaces between protocol stack components. 
 

1. INTRODUCTION 
Dynamic reconfiguration of protocol stack software raises a 
number of reliability and performance issues. These issues 
become more complex when protocol stack software from 
multiple vendors is supported on the same device. A 
solution to some of these problems is proposed in this paper 
and a performance assessment is conducted to determine its 
viability.  The generic protocol stack architecture meets the 
requirements defined for the identified key scenarios. 
Specifically, it allows for the high level requirements of: 
• Dynamic reconfiguration of protocol stacks during 
active communication sessions. 
• Upgrading of protocol behaviour to support optional 
features. 
• Adding extra functionality into existing protocol stacks 
or replacing complete stacks. 

• Download of third party protocol stacks or protocol 
stack modules. 
• Ensuring reliability and preventing rogue terminal 
behaviour. 
• Optimisation of protocol stack behaviour depending on 
the context of the terminal. 
• Operation of multiple stacks simultaneously. 
 
Previous research performed on software radio architectures 
and proposed solutions (see [1] and [2]) have focused on the 
functionality required to perform reconfiguration between a 
set of well defined radio access technology standards. 
However, protocol stack implementation can be 
reconfigured in different ways, for instance to more 
efficiently utilise device resources, or to reduce power 
consumption or improve security. This has not been 
previously considered in the context of reconfigurable 
terminals to allow the exploitation the capabilities of 
heterogeneous execution environments. 
A language and platform independent framework is 
proposed to meet these requirements, to allow the use of 
different operating systems, software development languages 
and execution environments in different combinations and 
optimised to the capabilities of individual device resources. 
It is further proposed that generic protocol components can 
be reconfigured to support different protocols (for instance 
different radio access technologies) with different optional 
or even proprietary features. Because of the new flexibility 
and the high reliability and security requirements imposed 
on reconfigurable terminals, a thorough validation scheme is 
proposed. The validation scheme utilises on the one hand, 
virtual prototyping for software configuration validation and 
on the other hand, assertion based monitoring of protocol 
stack execution to avoid rogue behaviour of the terminal. 
This paper investigates the architecture implementation 
issues and the initial performance results. These 
performance results are obtained for different execution 
environments, (operating system and Java virtual machines) 
on different hardware platforms. In particular the framework 
allows the dynamic addition of extra functionality and 
optional features together with the customisation of active 
protocol stacks.  
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2. FRAMEWORK 
A framework proposed to meet the 
requirements outlined above is based 
on a generic protocol interface (GPI) 
definition and generic protocol 
components as illustrated in the 
example layered protocol stack in 
Figure 1. The GPI supports generic 
service access points (GSAP) that can 
allow logical layer instances to be 
dynamically bound or rebound to form 
different protocol stack arrangements 
as required, with each protocol 
component running in the most 
appropriate execution environment (for 
instance processor, operating system, 
programmable logic or Java virtual 
machine) using the most appropriate 
programming language. The benefit of 
flexible communication co-processors 
have been investigated by other 
researchers [3] and potentially have 
many benefits for executing common 
protocol functionality (generic 
components).  As also outlined in [3] a 
protocol state machine translator can 
be implemented within a co-processor 
to dynamically interpret high level 
protocol code written in the standard 
Specification and Description 
Language (SDL). However, even with 
such capability there is still likely to be 
much use made of protocol 
implementations in C, C++ and Java. 
 
Simultaneous support for different 
radio access technology protocol 
combinations is provided using an 
intelligent routing layer (IRL) that can 
route packets (based on selection 
criteria and “best mode” indication) to 
and from the corresponding GSAP 
instances in a flexible manner. The 
IRL provides an open interface in 
order to allow selection of the most 
suitable modes by external mode negotiation and switching 
module (MNSM). The GPI itself supports binding and 
rebinding and security mechanisms to prevent unauthorized 
use of protocol components by malicious software. 
 
It is assumed that the configuration of the protocol stacks is 
controlled by a configuration management module (CMM) 
as described in previous work [1]. The CMM is responsible 
for configuring and reconfiguring the protocol stacks to the 

correct configurations with the most appropriate 
combination.  This is performed by binding and rebinding 
logical layer instance using the GSAP instance to identify 
the configuration and state associated with the particular 
binding. Therefore a unique GSAP and GPI instance naming 
convention must be used in each system. 
 In order to simplify the implementation and management it 
is assumed that the generic protocol components have a set 
of capabilities that can be retrieved to allow CMM to 
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determine what configurations are possible. This must be 
specific enough to indicate what optional algorithms and 
features are supported and conformance to which standards 
and versions and the estimated resource requirements for 
these different options. Proprietary extensions can also be 
supported in this framework by insertion of additional 
layers. For example a proprietary PPP based layer 
performing header compression and encryption could be 
placed on top of a standard GPRS compliant stack. 
Finally, the special connection management GSAP (CM-
GSAP) instances enable the setting up of connections in a 
generic manner. For example the QoS, security and other 
connection attributes could be specified in a technology 
neutral high level way. The CM-GSAP then handles 
mapping and translation to technology specific mechanisms 
using default attribute values stored in the CMM or MNSM 
(for example user profiles) as appropriate. 
Currently, the proposed framework is being evaluated in 
terms of performance and implementation complexity in 
different scenarios. 
 

3. VALIDATION SCHEME 
The introduction of open Application Programming 
Interfaces (API) to mobile terminals has led to a number of 
security problems, most of them already tackled (see [7] and 
[8]). The validation scheme proposed for the flexible 
protocol stack architecture, basically follows the guard and 
assertion checking approaches [9] and additionally 
introduces system validation by virtual prototyping as new 
system security measure. 
 
3.1. Guards and assertion checking 
Small software units, so-called probes, will be integrated in 
the executing protocol stack software by the framework. 
These probes will secure the correctness of software 
execution for over-the-air protocol stack software download 
and network based validation. Software probes contain 
assertions or other means of fault detection to supervise 
proper software execution. 
Normally, software probes will remain in code downloaded 
onto the target (resident probes). Using the virtual 
prototyping approach, software probes will be evaluated by 
the simulation environment and will not be present in the 
downloaded protocol stack code (non-resident probes). The 
use of non-resident probes will avoid the general drawback 
of using assertions: Slow-down of software execution. 
 
3.2. Virtual prototyping 
A modern way of evaluating system behaviour is by building 
a virtual prototype. A virtual prototype shows the same 
functional behaviour and timing as a real hardware-
prototype but being completely simulated by a simulation 
tool. A virtual prototype contains, besides the simulation of 
the target device, a simulation of the system’s environment. 

An environment for functional and timing-accurate 
simulation of multiple system domains is ClearSim MD. 
Current development of the ClearSim MD tool has extended 
the simulation model with the ability to insert assertions 
[10]. 
 
3.3. Protocol stack software validation 
The proposed validation scheme consists of three stages: 
 
• Network-based off-line validation, 
• Terminal-based on-line validation and 
• Run-time validation (also terminal-based) 
 
Off-line validation uses extensive system simulation for 
validation of the collaboration of the mobile terminal 
hardware and the installable protocol stack software and 
collaboration of the various software components itself. For 
that, a virtual prototype of the mobile terminal is designed 
and simulated in connection with simulation modules, which 
simulate network and user behaviour. 
Terminal-based on-line validation cannot fall back on 
system simulation due to resource constraints and security 
reasons, thus being limited to simpler checks. The terminal 
validates to-be-installed protocol stack software 
configurations according to predefined rules and tries to 
identify suspicious software configurations. The rules may 
contain plausibility checks, syntactic and semantic software 
configuration checks. 
After being validated by on-line validation, the necessary 
software will be downloaded and subsequently the requested 
protocol stack will be configured and executed on the 
terminal. 
During execution, the mobile terminal is able to supervise 
protocol stack behaviour with code-resist assertions and 
check-points. Such assertions may i.e. check for valid 
content of communication messages as well as for 
compliance to certain threshold conditions. This is called 
run-time validation. 
 

4. IMPLEMENTATION 
To enable  the framework to be execution environment and 
programming language independent, the GPI and GSAP 
interfaces must be able to support many different 
heterogeneous mixes of environment and language in a 
secure manner (i.e. with sufficient reliability and integrity). 
Solutions that appear promising, while still being 
lightweight enough to operate on resource constrained 
terminals, are asynchronous messaging mechanisms based 
on flexible and extensible signal data formats. These 
approaches are often used when modelling protocol stacks to 
abstract away from implementation detail and therefore can 
most easily cater for heterogeneous environments and 
languages. This approach to modelling does not specify how 
the message passing is performed only the format of the 
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signal data and the destination logical entity. In the proposed 
framework the logical entities are identified by GSAP and 
GPI instances which are uniquely identifiable within a 
system. 
 
Name Type 
PC Linux 1GHz Intel P3 PC with Linux 2.5.54 
PC 
Windows 

1GHz Intel P3 PC with Windows 2000 

SA Linux  Intel StrongARM 200MHz with Linux 2.4.18 
SA OSE Intel StrongARM 200Mz with Enea OSE 

Delta RTOS 
PXA 
Linux 

Intel PXA 250 400MHz with Linux 2.4.18 

PXA 
WinCE 

Intel PXA 250 400MHz with Pocket PC 2002 

Table 1 : Platforms Considered 

4.1. Execution Environments 
The execution environments considered within this paper are 
Java virtual Machines (JVM), Java interpreter and compiled 
native code, each environment supporting native threads and 
multiple processes. It is important to point out that the 
proposed framework is platform independent and so 
consideration is given to different platforms and a range of 
different platforms have been used to benchmark 
performance of different methods of implementing the 
proposed framework (see Table 1). 
The JVM execution environment has many inbuilt security 
mechanisms and allows the setting of permissions for access 
to various resources in a relatively fine grain manner. 
Including runtime permissions (for example ability to stop a 
thread) and network and file system access permissions etc.. 
This has many benefits in terms of implementing protocol 
modules that should only be allowed access to certain 
resources and a set of other protocol modules. The Java 
language and JVM environments also support dynamic 
module loading and software module extensibility by 
inheritance. These are also useful when considering protocol 
stack customisation, for example adding new features to 
existing protocol stacks. However, this approach is highly 
language specific and not as appropriate for heterogeneous 
execution environments and programming languages. 
 
4.2. GPI and GSAP 
As previously mentioned messaging based interfaces, with 
dynamically extensible signal data format, are assumed most 
appropriate to allow execution environment and language 
independence. Further to this logical layer instances  
accessed via the GPI and GSAP can be executing in 
different execution environments to provide the level of 
protection required or because performance can be 
enhanced. Different execution environments may imply the 

use of different operating system threads or processes or 
could also mean the use of different physical processors. 
The use of different processors was not considered in the 
benchmark performance evaluation. 
The thread and process functionality differs between 
operating systems and support for different thread and 
process messaging security options and performance can 
vary widely. Some operating systems have inbuilt thread and 
process messaging mechanisms. For example the Linux OS 
supports System V based inter-process messaging.  
Important considerations for supporting the proposed 
framework are the association of message queues with GPI 
and GSAP instances. The location and protection of 
message queues within memory and access control to these 
queues in an efficient manner. Clearly, operating system 
kernels with inbuilt mechanisms to support these features 
will likely outperform add-on solutions. However, in-built 
mechanisms are often not sufficient to support every 
possible arrangement efficiently and securely. 
The proposed thread and process architecture solution to 
support protocol stack reconfiguration is to associate each 
GPI and GSAP instance with a persistent independent input 
message queue. In this manner, the logical layer instance 
accessed via the corresponding GPI and GSAP instances can 
be executed within the same thread, in the same or indeed 
different execution environments, or in different threads or 
even different processes. 
Operating logical layer instances in different threads and 
processes has the benefit of being able to provide different 
performance (by prioritisation) and operating system based 
security mechanisms to provide protection between different 
instances. However, the penalty is in the increased 
messaging latency between threads and processes. 
 
4.3. Secure Messaging 
The key features of the messaging solutions are that the 
identity and authority of the destination and logical layer 
instance using a particular GPI oe GSAP can be established 
and the delivery mechanism can continue when the protocol 
stack is being reconfigured. This necessitates that state and 
security related information (such as authorised users) of 
individual GPI and GSAP instances be maintained in a 
persistent manner. It also implies that messages are 
persistent when the sending or receiving instances are 
temporarily not available. Further to this the GSAP access 
control mechanisms must allow for the handover of 
ownership from one logical layer instance to another for 
protocol stack upgrading. This allows individual logical 
layer instances to be upgraded in addition to complete 
protocol stack layers by reassigning an existing GSAP to a 
new logical layer instance. 
It is proposed that messaging security should have the 
following mechanisms to allow dynamic protocol stack 
upgrade and customisation: 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



�� Unique message queue identification  
�� Thread safe message queue access  
�� Message validation  

Firstly, the message queue identification corresponding to a 
GSAP instance is based on a protected (lookup, add and 
delete) mechanisms that accesses a repository of GPI and 
GSAP instance status information. This allows the current 
message queue for a particular GPI or GSAP instance to be 
obtained.  GPI and GSAP instances can then be assigned to 
different logical layer instances as they are upgraded.   
Next, the message queue access is also a protected 
mechanism. This prevents simultaneous access to the queues 
and can enable the authority of the logical layer instance 
attempting to access a GPI or GSAP to be validated. Logical 
layer instances can then have exclusive access to individual 
GPI or GSAP message queues.  
Finally, a validation is performed on actual messages within 
the queue to ensure that the posted messages are from an 
authorised source and of the correct format.  

The above message security mechanisms present a certain 
additional overhead in ensuring reliability and integrity 
within dynamic protocol stack configuration. Therefore 
more efficient solutions have been explored that can be used 
in situations where this high level of protection is not 
required or can be provided by other means. 
 
 

5. BENCHMARKING 
Tests were performed to determine the performance of the 
proposed architecture mainly in terms of latency to perform 
messaging interactions across GPI and GSAP boundaries.  
The basic test involves measuring the round trip time for an 
information request operation over a GPI or GSAP interface 
boundary. This operation simply sends a request message 
and waits for a response message. The test is repeated a 
number of times in order to be able to measure the latency of 
the individual (round trip) request operation. 
The comparisons of latency are performed for four different 
scenarios which are shown in Figure 1 and described below.   
 
5.1. Five step process  
The five step process involves five semaphore operations: 
Lookup lock - The sending and receiving threads first 
perform a semaphore protected lookup operation to 
determine the message queue for the recipient GPI or GSAP 
instance. This ensures that GPI or GSAP cannot be added or 
deleted during access to this data repository.  
Queue lock (send) - The second step is the semaphore 
locking of the message queue to ensure that no other thread 
can access the queue while a message is being added. 
Signal - Another semaphore operation to signal the message 
has been added to the queue.  
Queue lock (retrieve) - The final step is the semaphore 
locking of the queue to retrieve the message. 
5.2. Three step process 
The three step process eliminates the need to perform queue 
locking by having an atomic mechanism to add and delete 
messages from the queues. This means that message can be 
added and removed without locking. 
5.3. Single step process 
The single step process removes the need to perform a 
lookup lock because the GPI and GSAP information is held 
in shared memory with all threads and processes having read 
access to the queue information and the queues themselves 
held in a shared memory segment. The addition and deletion 
of GPI and GSAP queues is performed in an atomic 
operation. An advantage of holding all messages in shared 
memory is that it reduces the amount of data copying that 
needs to be performed to retrieve queue information. 
5.4. No Context Switch 
This approach uses no semaphore operations, as it is 
assumed that the sending and receiving is performed in the 
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same thread and therefore no context switch is performed. 
However, a look-up is still performed to post the message to 
the appropriate queue and dynamically obtain the necessary 
function call to invoke. It is functionally the same as the 
thread and process messaging to enable secure dynamic 
reconfiguration and so message validation is still performed. 
 
5.5. Results 
The results show that in the tests the PC is consistently 
around 15 times faster than the Strong ARM device running 
the Linux operating system. It is also possible to see that the 
System V semaphores supporting messaging between 
separate processes incur an additional 60 to 70% latency 
over POSIX thread semaphores. However, the use of an 
operating system with built-in support for efficient secure 
messaging (Enea OSE) has significant advantages being at 
least four times faster than the Linux based solution and only 
around 3 times the latency of the much more capable PC 
platform running Linux. 

It is also notable that the JVM 
implementation of the Strong 
ARM platform consumes 
3Mbytes of memory (excluding 
shared memory) for a logical 
layer instance supporting the 
GPI with 9 threads (4 of which 
are JVM related administrative 
threads). This is compared to 
the 630kBytes required for the 
native approach. 

 
4.6. Observations 
The results indicate that there 
are significant benefits if the 
GPI and GSAP interface 
boundary occurs within the 
same thread or process (no 
context switch case) to avoid 
context switches. However, 
there are benefits of using 
different threads and processes 
optimised to provide different 
performances and security, 
particularly when multiple 
processor and mixed protocol 
software vendor environments 
are used. For example, any 
misbehaviour within a logical 
layer instance thread can be 
relatively quickly identified and 
the GSAP message queues 
blocked and the thread 

suspended. However, if a GSAP boundary is within a thread 
it may be difficult to determine the logical layer instance 
causing a particular problem (such as memory leaks) and 
suspend (or block) the correct GSAP and extract the 
offending protocol stack software component. 
A context switch is not necessarily required when using 
different environments under the control of the same 
operating system, however, the performance benefits vary 
considerably between the platforms considered. For 
example, performing a I step based context switch between 
threads on the Linux based PC platform is not much longer 
than with no context switch on the PXA 250 and PC 
Windows platforms (and in fact less that on the SA Linux 
platform). 
 

6. CONCLUSIONS 
This paper has presented a framework for supporting 
flexible reconfigurable protocol stacks using secure and 
efficient asynchronous messaging in heterogeneous 
execution environments. In addition the performance results, 
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in terms of latency for component interactions, have been 
presented for different platforms. The specific advantages of 
the proposed framework over other approaches (such as 
documented in [5] and [6]) are that it enables execution 
environment and programming language independence, 
(exploiting the full benefits of the device capabilities), 
without being restricted to using a single environment (such 
as a JVM, operating system or processor) or computational 
model (such as thread per message). At the same time the 
framework is lightweight and so it does not impact heavily 
on device requirements. The combination of off-line, on-line 
and run-time validation, combined with generic interaction 
reliability and integrity mechanisms are appropriate for the 
dynamic reconfiguration of protocol stacks on resource 
constrained devices. 
The framework has limitations particularly when high 
performance is required for synchronous interactions with 
trusted software particularly within common execution 
environments. Currently, there is also ongoing research into 
high performance component technologies for scientific 
computing that supports multiple languages, execution 
environments and exploits the benefits of parallelism [4]. 
However, many of these approaches are too heavyweight for 
the often resource constrained terminal device.  The 
proposed approach can, if necessary, be combined with 
these high performance component technologies and utilise 
a suitable common Interface Definition Language (IDL). 
The performance observed in tests on different platforms 
indicates that the framework can be successfully applied in 
many scenarios to allow dynamic protocol stack 
reconfiguration while making use of heterogeneous 
execution environments and mixtures of programming 
languages within protocol stacks. Using such a framework 
could ultimately open up a new innovative era of third party 
protocol stack downloading to mobile devices akin to the 
application downloading that is common place for PC users 
today. This can allow network operators and  users enjoy a 
new freedom of communication protocol customisation and 
optimisation providing enhanced performance, battery 
power and radio resource utilisation efficiency and security.    
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