
A POLICY-BASED FRAMEWORK FOR THE AUTHORISATION OF SOFTWARE DOWNLOADS IN A
MOBILE ENVIRONMENT

Eimear Gallery (Mobile VCE Research Group, Information Security Group, Royal Holloway, University of London,

Egham, Surrey TW20 0EX; E.M.Gallery@rhul.ac.uk)

ABSTRACT

Software defined radio is a potentially important paradigm
for the future communications industry, allowing the
mitigation of many problems encountered when wireless
networking infrastructure and terminals are implemented
completely in hardware. SDR technology allows radio
functions to be implemented as software modules running
on generic hardware platforms, and thus the expense and
frustration involved in user migration to alternate handsets
after the deployment of a new network standard can be
alleviated. Problems arising when travelling between
countries which have dissimilar air interfaces and link
layer protocols deployed, potentially inhibiting roaming
between wireless networks, can also be avoided. With the
deployment of SDR these issues can be tackled via the
upload of software modules onto hardware platforms,
implementing different or upgraded standards, allowing
many different network technologies to happily co-exist.

This exciting technology, however, brings with it an
assortment of security problems. The risk of software with
malicious intent damaging any system/device on which it
is executed, becomes a very real danger and in this
respect, determining whether or not received code should
be exe cuted on a particular hardware platform is a very
serious issue. This problem becomes especially critical in
a mobile environment, where bandwidth and processing
power may often be limited; restricting the capabilities of
a mobile node either to contact the originator of the
software or to perform detailed checking of the code.

1. INTRODUCTION

This paper focuses on the construction of a policy-based
authorisation framework for implementation within the
mobile environment, with the objective of providing both
mobile devices with the ability to assign appropriate
privileges to software, according to both where it
originates from and the attributes it possesses. This
policy-based architecture consists of two fundamental
policy models. The first exists within the trusted domain
server responsible for a set of mobile devices lying within
its protective boundaries, and which is accountable for the
production of code attribute credentials for device use
based on a series of security checks. The second exists
within the mobile device and results in the output of an
authorisation decision regarding running an executable
based on code attribute assertions output by the domain
server and defined policy statements held within the
device.

We begin with a brief overview of critical analysis
previously completed on a number of architectural
authorisation models, to determine the fundamental
requirements for an architecture for mobile code
authorisation in a mobile environment as regards the
framework, and policy expression of that framework.
Following this, a brief overview of various policy
specification language assessments is given to justify our
choice of language for the definitive model. The definitive
framework is then given, followed closely by policy
expression and policy engine description for the domain
server and the end device.

2. ARCHITECTURAL ANALYSIS

We will begin, as stated, with a brief overview of critical
analysis previously completed on five possible
architectural authorisation models [1]. In the first scenario
code authors ask device manufacturers for consent to
produce code, and in return signed attribute statements
consisting of an identity element and an authorisation
status element are sent to the author. Code authors can
then sign and distribute code with the attribute statement.
This system is basic, and the authorisation technique is
very generic. An author is labelled either safe or unsafe,
with no allowance for the possibility that not all code
coming from a particular source is of a similar standard.
Much responsibility is placed on the device manufacturer
– it is not clear why the device manufacturer should be
made the sole trusted point.

The fundamental concepts in the next scenario
closely mirror those described in MExE, where code is
allocated to an execution domain depending on the code
author identity. This scenario is also rather restrictive
because authorisation is based solely on the identity of the
code author. It also leads to questions as to why the device
manufacturer is trustworthier than a network operator.

In an alternate scenario the code author submits code
segments to a chosen TTP for testing, and the type and
result of successful tests are subsequently recorded in a
signed credential. Here, should a problem arise with
malicious code, responsibility can be assigned to the TTP
in question if testing was not carried out accurately or
correctly and this may deter fraudulent TTPs. This model
does, however, require much more processing in the
device. In addition to signature verification, proofs of
code may have to be verified. It may also be difficult to
assign the code to a particular domain based on test
results, as no standard test methods currently exist.

By putting ACLs, containing the identities of trusted
code producers, in devices, certain executables may be

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

authorized to bypass security checks. This modification
improves efficiency but may jeopardise the security of the
network should a user be permitted to add identities to the
‘trusted author’ ACL. Alternatively ACLs can be used to
increase the security of the system where code must be
sent with an attribute statement signed by a TTP, but must
also be signed by a trusted code producer whose identity
is stored in the ACL. This set-up may however necessitate
the storage of large ACLs in resource-restricted devices.

In the next scenario, code, on its receipt by a proxy
server and after the signature of the code author is
verified, is executed in a simulator mirroring the
destination mobile device. If malicious behaviour is
attempted by the code in the simulator, the code is
discarded and a record of the code failure is made in the
profile of the code author. Conversely, if the code behaves
as expected, a note is made of this in the profile of the
code author. This method, rather then confining the
examination of code to specific tests, allows for the
discovery of any violations that may be attempted. It does,
however, mean that all code must be executed twice,
which may lead to efficiency problems. However the
profile database may allow domain severs to authorise
code without simulated execution, after a certain positive
profile level has been achieved.

3. POLICY EXPRESSION TECHNIQUE

ANALYSIS

Selecting a security policy specification technique
involved the examination of a large group of policy
specification languages, including PLAS, ASL, Keynote,
Nereus, SPL, Ponder, XML, SAML, XACML, and TPL,
so that languages meriting detailed consideration could be
identified. Keynote, Ponder, SAML, TPL and generic
XML were then chosen for detailed consideration.

Keynote [2] was found to be a simple and flexible
language, easy to read and write. One unified language is
useable for both credential and policy expression which is
practical and convenient. The documentation, outlining
the features and attributes of the language, is also clear
and precise. Signed credentials are a major attraction of
this technique, in conjunction with the fact that credential
chains can be used. It must also be noted that, with
Keynote, the necessity for the definition of external
semantics is alleviated but in order to ensure
interoperability the name of the application domain, over
which action attributes should be interpreted, may be cited
in the attribute named "app_domain" and responsibility
assigned to a suitable authority to provide a registry of
reserved app_domain names, which lists the names and
meanings of each application's attributes [2].

The second policy specification language investigated
was Ponder [3]. The language allows for the expression of
many different policy types from authorisation policies to
refrain policies. Rules for composite policy construction
are also explicitly defined, making simple the
management of large systems. The probable occurrence of
conflict among policy statements is also considered and
meta-policies can be implemented to alleviate this.

However, problems arose in relation to our predefined
requirements, for example, this particular language
assumes prior authentication, and acts merely as an access
control mechanism. Ponder is also a language designed
for policy statement specification but not attribute
statement specification. In conjunction with this, although
this language appears readable, construction of policy
statements is not easy. Constraints are expressed using a
subset of OMG’s OCL, which is not very user-friendly to
the nonprogrammer.

The third specification language investigated was
SAML [4]. The language itself is no more complex then
generic XML, is easy to read and write, and is both clear
and unambiguous. Standard assertion and protocol
schemas allow for the definition of the majority of
authentication, attribute and policy decision statements,
with graceful extensibility of schema and the definition of
additional namespaces made possible if required.

TPL is “used to define the mapping of strangers to
predefined roles, based on certificates issued by third
parties” and is explored in a paper by Herzberg, Mass,
Michaeli, Naor and Ravid [5]. This language poses some
interesting concepts and should a role-based access
control policy specification language be chosen for policy
specification, TPL provides a tidy intermediary between
attribute credential expression and mapping of entities, by
the use of particular credentials, to roles. It is XML based,
which makes it both flexible, extendible and user friendly.

Finally we considered generic XML [6], from which
languages such as SAML and TPL were created. XML is
a toolkit for creating and using markup languages and
defines two document model types, the DTD or XML
schema.

4. POLICY MODEL REQUIREMENTS

Analysis of the above scenarios enables attributes required
of the final model to be extracted. As regards the mobile
environment these include: minimum use of the device
CPU; minimum use of device disk space for storage of
security controls (e.g. ACLs); authorisation based on the
code and not merely the producer id; comprehensive test
sets using proved, reliable technologies such as proofs of
code; and use of TTPs or preferably domain servers.

As regards system components we must consider the
inclusion and adoption of: a mechanism for the protection
of original code; a way in which the identities of the code
author can be verified; and a means of assuring code
quality. As regards policy expression, SAML was chosen
for credential expression and our knowledge of TPL and
XML DTD definition allowed us to define a DTD for
policy statement expression.

5. THE LEGACY SYSTEM AND THE

BUSINESS MODEL

As regards SDR, we focus on the protection of mobile
devices within an operating network as should one device
within a network be contaminated the fall of that network
could result. For this particular framework the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

requirement is that all devices/ potential hosts within each
mobile network lie within the protective boundaries of a
domain server responsible for authorisation. From
investigation into mobile terminated routeing protocols, I
envisage the integration of the security proxy server into
the GPRS servers or the border gateways that exist
between PLMNs.

As regards the mobile architecture, parties include
mobile devices, network operators, code consumers and
software houses. Software houses produce code and sell it
in order to make a profit and therefore should accept
responsibility and cost for the production of code quality
guarantees. The consumer, who purchases code from the
software house and gains functionality from the code, will
also be willing to pay code authors, to ensure that code
comes with security controls, and trusted domain servers,
for completion of independent checks. Finally the mobile
operators have a vested interest in ensuring that their
customers remain satisfied and that their network remains
functional. Circulation of these executables also boosts
network traffic and mobile functionality, a profitable
result for the operators.

6. SECURITY FRAMEWORK

The initial step in constructing a policy-based framework
involves the development of the underlying architecture;
the assignment of roles and responsibilities to each of the
identified participants; the selection of the state of the art
security mechanisms to be deployed; and the definition of
protocols associated with the architecture.

6.1 Entity Roles and Responsibilities
Entities include the software provider houses, responsible
for the manufacture and production of signed code in
conjunction with proofs of code; the code consumer; the
mobile device, which must contain the relevant policy
statements and policy engine such that incoming code can
be assessed and either discarded or authorised to varying
degrees; trusted security domain servers, responsible for
the verification of code safety; and certification
authorities, responsible for the verification of key
ownership and the creation of public key certificates.

6.2 Digital Signatures
As regards security system components, the first to be
deployed is the certificate-based asymmetric digital
signature, which provides protection of the original code
and unequivocal evidence of the author’s identity. There
are many security issues however that must be considered
as regards the implementation of this mechanism. We will
focus on RSA and DSA schemes on some occasions so as
to illustrate the importance of correct parameter selection
in relation to particular signature schemes.

Problems may arise in relation prime generation. In
the case of both RSA and DSA, attacks have been
launched against schemes that utilise weak primes. It is
true to say that, “choosing a strong prime is like locking
one door, but leaving others unlocked, choosing large
primes is like locking all the doors” [7]. In both of the

schemes, moduli of larger sizes, implied by choosing
large prime numbers negates the need to use specially
devised prime generation processes to avoid weak primes.

In randomised schemes, random number generation is
also proved critical and whether truly random numbers,
pseudorandom numbers, or cryptographically generated
numbers are used, the numerical output must be
comprised of truly random and unpredictable numbers
which are of uniform distribution and independent.

In order that the hash function doesn’t lead to any
security breaches it should possess the following
attributes: it can be applied to a block of data of any size;
it produces a fixed length output; the hash of any message
is relatively easy to compute so that both hardware and
software implementations are practical, one-way property
and either weak collision resistance or preferably strong
collision resistance [8].

In relation to digital signatures with message
recovery, a good redundancy adding function must be
chosen, as the choice of function is critical to the security
of the system, where a redundancy function is one in
which the message to be sent is usually input into so that
it will be in the correct format to be input into the
signature generation process.

In both the RSA and DSA schemes, among others,
the danger of using a common modulus also exists. In the
RSA scheme, this is a proven threat, and there are a
variety of attacks on systems of this nature, one of which
for example involves a probabilistic method of factoring
n. In relation to the DSA, while there has been no proven
attack on such a system where moduli are the same, it is
suggests that using such a system is only an invitation for
cryptanalysis.

6.3 PKI
PKI is defined as the ‘set of hardware, software, people,
policies and procedures needed to create, manage, store,
distribute and revoke public key certificates based on
public key cryptography’ [9]. Managerial issues to be
considered before implementation include the following.

In March 2001, Verisign discovered that in January
2001 they had issued two class-3 certificates to an
impostor who claimed to be an employee of Microsoft.
This was the result of the certification authority failing to
correctly authenticate the recipient of the certificate and it
led to the to a situation where malicious code could have
been distributed by the attacker and accepted by any user
it was sent to without hesitation due to the ‘legitimate’
certificate that accompanied it. So, as stated by the Vice
President and General Manager of Applied Services at the
Mountain View, California, “Due to human error we did
not detect that the individual concerned misrepresented
that they worked for Microsoft when, in fact, they did
not” [10]. We see a system based on complex
mathematics and a highly intricate trust infrastructure fall
over due to a slip in the original authentication of the
requester of the certificate.

In order to implement this digital signature
technology, software implementations, such as secure
operating systems or alternatively hardware devices such

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

as processor cards or crypto boxes have been proposed, all
of which can be attacked by Trojan horses, programs
which overtly do one thing while covertly doing another
[11]. Some of the first evidence illustrating that data could
be signed that was actually different from the displayed
data the signatory thought he was signing was illustrated
by Rossnagel, 1994 [12] in systems which used chip cards
that could be manipulated by third parties at operating
system level. There have been numerous opinions on this
matter as to how easy it is for insiders to distribute these
Trojan horses, such as those employed as software
distributors or as personnel involved in installation or
maintenance.

A further issue, which may lead to concerns, is that of
key generation and the closely linked concept of key
recovery. Although one of the attractive attributes of CA-
based asymmetric signature schemes is that each
participating individual can generate their own key pair,
many individuals and organisations alike do not possess
the expertise to do so and therefore rely on the services of
a trusted key generation facility to do this for them.
Although it would be good practise on the part of the third
party involved to generate the key pairs, distribute them to
the parties concerned and then ensure that no record of the
key pair is held on any internal database of the company,
one must be aware of the situation that could arise when
third parties become involved and all individuals must
ensure that they are using respected and trusted key
generation services. It is important to distribute the key
pairs securely once they have been generated so that they
are free from the danger of interception and compromise.

The Revocation Problem is als o one that should be
considered in relation to PKI use. Whether CRLs,
certificate distribution points, delta CRLs, indirect CRL,
OCSP or SCVP is utilised, timely and effective revocation
must be achieved.

One final issue, which may seem to be an obvious
one, but one that mustn’t be overlooked, is that of
physical security and access control.

6.4 Virus Scanning
A selection of virus scanning techniques will also be used
within the domain server on all incoming code prior to the
completion of any other security checks in order to ensure
a basic level of security. These mechanisms include first-
generation simple scanners, which merely scan code for
what are labelled virus signatures, bit patterns and
structured pieces of code known to be and indication of
malicious activity and second-generation heuristic
scanners, which make use of heuristic rules in order to
detect probable virus infection such as looking for
fragments of code that are often associated with viruses or
verifying checksums, appended to each program.

6.5 Trust Relationships
We will now move on to investigate the trust bonds in
existence within the framework. The first of these trust
bonds is that of the implicit trust between all host devices
and the particular trusted domain server to which they are
bound; the second represents the trust relationships that

may be arranged between domain servers and software
houses, and there are also the trust bonds constructed
between various domain servers who may place varying
degrees of trust in one another. As regards trust ratings,
assignment may depend on quality of service of code
generally received, audit and accountability, compliance
with accepted industry standards and all relevant
regulation, contract, liability, policy statement,
performance and reputation or through transitive trust and
a code author may be assigned a high, medium or low
trust level and a domain server may be assigned a high or
medium level of trust in defined policy identity lists. A
code author may also be blacklisted. These trust levels
will then impact the checks completed on code; the
efficiency of the authorisation process; and the eventual
privileges assigned to the code as regards execution on the
device, as illustrated below.

Tampering is an issue that must be considered with
respect to these policy identity lists. In order to handle this
problem we introduce the concept of the trusted
computing base which encompasses; the abstract concept
of the reference monitor, which mediates all accesses to
objects; the security kernel, which includes the hardware,
software and firmware of the TCB which implements the
reference monitor; and the trusted computing base which
includes the security kernel among other protection
mechanisms. This security kernel must mediate all
accesses, be protected from modification and be verifiable
as correct. It is here that identity lists should be stored.

It is at this stage also that I will discuss the issue of
domain server denial of service “characterized by an
explicit attempt by attackers to prevent legitimate users of
a service from using that service” [13]. Denial-of-service
attacks come in a variety of forms, consumption of
limited, or non-renewable resources; destruction or
alteration of configuration information; or physical
destruction or alteration of network components, each of
which administrators must be vigilant for. Distributed
denial-of-service attacks which involve floods of packets
that originate from hundreds of other victims whose
integrity has been compromised by criminal hackers and
the final victims are the sites receiving a flood of
fraudulent packets that can crash servers and saturate
inbound bandwidth must also be considered. The
implementation of widely publicised preventative
measures on this topic is vital with respect to trusted
domain servers.

The services of an accreditation authority may also be
required if incoming code is received from an unknown
author and has minimally trusted or no assertions
accompanying it. Rather than discarding all code that falls
into this category a national accreditation authority may
exist to which code authors can register and undergo a
series of generic tests to ensure legitimacy. The name of a
code author on this registry may indicate to the domain
server that code originating from this source should be
given very minimal privileges rather than being discarded.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

6.6 PCC
We will now move on to a mechanism described by
Necula and Lee in [14] labelled proof carrying code, and
it is used in order to solve the problem of establishing
trust between code authors and code consumers without
any reliance on cryptographic protocols. Essentially this
method requires that a “safety proof that attests to the fact
that the code respects a formally defined safety policy” is
created and sent in conjunction with the associated code
segment. On receipt of the code and the proof the code
consumer can simply and efficiently check the validity of
the proof with a proof validator and make a decision as to
whether or not the incoming code is safe to execute.

As with other security mechanisms, this too puts
forwards some challenges to be overcome. Correctness
proofs depend on the programmer or the logician to
translate a program’s statements into logical implications
and just as programming is prone to errors, so is this
translation. Deriving the correctness proof from the initial
assertions and the implications of statements is also
difficult. In addition logical engines proposed for the
generation of proofs run slowly and the speed of the
engine degrades as the size of the program increases, so
that proofs of correctness are even less appropriate as of
yet for large programs. The current state of program
verification is less well developed than code production.
Questions also arise in relation to how big proofs get in
practise and the large bandwidth required in sending them
across the network [11].

6.7 Path Histories
Path histories are also put to use within this framework. In
our particular situation we do not wish to utilize this
mechanism strictly for tracking the path of the executable
so as to deter malicious manipulation but to draw on it
such that domain servers can see as to whether domain
servers they trust have already tested the code in question
as should this be the case a request can then be sent from
the current domain server host to a previously visited and
trusted proxy for a credential specifying the attributes
relating to the code. We see possible construction of path
history entries as follows until a full track log has been
built:
signature of current location on (code
identity/hash |assertion references| the previous
location | current location, i.e. security domain
| next location).

Let us now consider a general overview of how the
system may function, how all entities listed above may
interact and communicate such that it works smoothly.
We initially request that all code producers and domain
servers acquire a public/private key pair and have this key
pair certified by a chosen CA. New code authors may also
apply to be placed on an accreditation authority register. It
all begins when a user requests code from a software
house, who assumes responsibility of program
manufacture in conjunction with the proofs of code.
Alternatively the code producer may only adopt the
responsibility of code creation in conjunction with the
signing of what they have created. Once the above has

been completed, the code is sent to the consumer and it is
at this stage that the authorisation mechanisms come into
play. In the framework we propose that the first entity
code meets on its journey to a destination mobile device
contained in a particular network is a domain server,
whose responsibility it is to ensure any code with
malicious intent does not receive the opportunity to
damage the host on which it wishes to execute.

7. DOMAIN SERVER POLICY EXPRESSION

As regards policy declarations, we require the expression
of domain server credentials, i.e. assertions created for use
by other domain servers by the current proxy acting as an
attribute/authentication authority for code which has
tested; attribute credentials, sent with the code from the
trusted domain server to the end device; policy statements,
defined for the trusted domain server in conjunction with
those defined for the device itself; and finally the
expression of the domain server policy engine, which will
output an attribute credential for the end host use; and the
device policy engine, which makes the final authorisation
decision regarding code based on the attribute credentials
received and the policy statements defined.

When code enters a domain server three things must
occur: assertions must be either created for other domain
servers or requested from trusted domain servers if they
already exist; code must be checked for safety and
assertions for the end device must be output. When code
comes into contact with a trusted domain server the path
history is initially checked and either: the code has not
been in contact with any other trusted domain servers in
which the current domain places its trust; no path history
is in existence; or there exists a reference(s) from a TDS
to an assertion in the path history. If the code has not been
in contact with any other trusted domain server, the
security proxy server takes on the role of both
authentication and attribute authority. In this instance the
incoming code presents the domain server with its
credentials, for example the signature of the code author
or proofs of code. On completion of checks,
authentication and attribute assertions are created by the
domain server and their reference is added as part of the
trusted domain server’s entry to the path history such that
subsequent domain server’s code visits may be able to
request credentials by reference. This credential
construction is separate from the process used to create
and forward the code’s attribute credential to the end host.

The first assertion to be created is the authentication
assertion for the code author. In order that we can add the
<CodeCondition> element to the assertions, the SAML
assertion schema has to be extended. To achieve this, we
utilised the element <Conditions>, which serves as an
extension point for new conditions and the substitution
group mechanism. In this case the extension schema
defines a new element <CodeCondition>, which is a
member of a substitution group which has <Condition> as
a head element. The substitution group then allows the
<CodeCondition> element to be used anywhere the
SAML <Condition> element can be used.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

The following is the schema fragment, which has defined
the new type:

<!-- CodeCondition -->
<element name = “CodeCondition”

type = “asamle: CodeConditionType”
substitutionGroup = “saml: Condition”/>

<complexType name = “CodeConditionType”>
<complexContent>

 <extension base = “saml;ConditionAbstractType”>
 <sequence>
 <element name = “CodeIdentity” type = “binary” >
 </sequence>

 </extension>
</complexContent>

</complexType>

In assertions the code identity element will contain a
binary number comprised of the code hash. Before the
assertion can be deemed valid by a receiving proxy the
hash of the code must be checked against the code identity
entry to see if they match. Following this, various code
checks are undertaken and an attribute assertion is also
created for the incoming code. If on the other hand a
reference to an assertion created by a trusted domain
server exists in the path history, a query can then be sent
to a listed TDS for all the available assertions and the
appropriate digitally signed assertions would be sent in
return.

The initial step carried out by the domain server
policy engine is to put all executables through a virus
scanner such that any obvious threats can be identified
promptly; the next step involves checking of the path
history for security domain server identity and assertion
references where domain server may be trusted either to a
medium or high degree; If such a domain server exists, the
assertion identities are extracted from the path history and
a request is sent to the trusted domain server as was
explained above; Once the credentials have been received,
the signature on them are verified and if received from a
highly trusted domain server the identities of the code
author is extracted from the credential; If the credentials
have been sent by a domain server trusted to only a
medium degree or if no suitable credentials exist, the
signatures of the code producer on the code hash is
verified. If signatures cannot be verified, or if the
corresponding certificate has been revoked, the code is
immediately discarded.

Check path history:

 Domain server high

Check path history:
Domain server
medium

No trusted proxy
listed in path
history

Authentication credential as
sufficient verification of author
id

Verify author signature Verify author
signature

The identity of the code producer is then checked against
trusted policy identity lists and depending on the trust
values assigned to the code author and the trusted domain
server, the code is put through a series of checks.

 Path history:
Highly trusted
domain server

Path history:
domain server
trusted to
medium degree

Path history: No
report

Code author No checks, code No checks, code No checks, code

highly trusted assumed safe assumed safe assumed safe

Code author
medium trust

Check credential
No proof
verification

Check credential
PCC verification

PCC verification

Code author
no trust

Check credential
Try PCC
verification

Check credential
Try PCC
verification

Try PCC
verification

Following the results of these checks in conjunction with
identity information, a trust value is assigned to the code
in an attribute assertion, examples illustrated below:

Trusted
domain
server:
check
path
history

Code
author

Tests
actually
completed
with
success

Accreditation by a
standards body:
only considered
when code author is
unknown

highest level of
trust allotted to
code and the
efficiency rates

High

All ok
assertion

1

High

4

Code
assumed
safe

N/A 5

Very fast

1 sig. ver.
No pcc ver.

Med/ High
report

S’thing
wrong

N/A N/A N/A Discard

Very fast
1 sig. ver.

High

All ok
assertion

1

Low
0

PCC
verified

Accreditation from
standard body

1

2

Slow

8. DEVICE POLICY EXPRESSION

We will now examine the credentials, which are passed
between the security proxy server and the end host. The
credential accompanying the code is an attribute
credential. Incorporated into it is an attribute element
<CodeTrust Report>, which contains the trust value
assigned to the code by the domain server.

<Assertion xsi:type= “saml :AttributeAssertionType”
 version= “0100”
 AssertionID = “{6738467-47378dj-hu234832}”
 Issuer = www.DomainServer1.com
 IssueInstant = “2003-05-31T13: 20:00-05:00”
 <Conditions
 Notbefore = “2003-08-31T13: 20:00-05:00”
 NotOnOrAfter = “2004-08-31T13: 20:00-05:00”>
 <asamle:CodeCondition>
 <asamle:CodeIdentity>0001101……010101</asamle:CodeIdentity>
 </asamle:CodeCondition>
 </Conditions>
 <Attribute>
 <AttributeName>CodeTrustReport</AttributeName>
 <AttributeNamespace>
 http://ns.code-Trust-vocab.org/basic
 </AttributeNamespace>
 <AttributeValue>
 <Trust>3</Trust>
 </AttributeValue>
 </Attribute>
</Assertion>

Where the schema for attribute is specified in the
following namespace, http://ns.code-Trust-vocab.org/
basic and the following schema fragment defines the
element <TrustValue>:

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

<element name = “TrustValue”>
<simpleType base = “positive-integer”>
 <maxExclusive value = 5>
</simpleType>
</element>

When the code attempts execution, an access request
is sent to the policy decision point in conjunction with the
relevant assertion. The policy engine initially forwards the
code and the assertion to separate applications which:
verify that: the code hash is equal to the bit string in the
element code condition; the time is valid; and that the
signature on the credential is that of the domain server. If
any of these checks fail, the code is discarded.

If all the verification processes are completed
successfully the code and credential are returned to the
policy decision point, which assigns the code to a role
depending on two inputs, the policies defined from a very
simple DTD illustrated below, and the assertion content.
This particular DTD, which stems from DTD developed
by Herzberg et al. in [5], defines a role element comprised
of a number of rules, which are made up of requirements
consisting of two attributes, the issuer identity, which
must be that of the trusted domain server and the trust
value which must have a value between 0 and 5 inclusive.

Policy language:
<?xml version = 1.0”?>
<!ELEMENT POLICY (ROLE)*>
<!ELEMENT GROUP (RULE)*>
<!ATTLIST GROUP
 NAME ID #REQUIRED>
<!ELEMENT RULE (REQUIREMENTS)*>
<!ELEMENT REQUIRMENTS EMPTY>
< !ATTLIST REQUIRMENTS
 ISSUER “Specific domain server identity”
 #REQUIRED
 TRUSTVALUE (0¦ 1¦ 2¦ 3¦ 4¦ 5) #REQUIRED >

 We follow this with a specific policy DTD instance.

<!---->
<!—Code with credential that has issuer=trusted domain server and trust
value 5 will be mapped to the most trusted entity group/role>
<!---->
<?xml version = 1.0”?>
<GROUP NAME = “most trusted entities”>
 <RULE>
 <REQUIRMENTS ISSUER = “identity of domain server”
TRUSTVALUE = 5>
 </REQUIRMENTS>
 </RULE>
</GROUP>

In this case ‘role’ represents a “collection of
procedures assigned to code, where procedures are
highlevel access control methods with a more complex
semantic than read or write and procedures can only be
applied to objects of certain datatypes” [15]. The
assignment of a role to an executable should also lead to
the transfer of a resource priority value, which it will use
with regard to resource usage such as CPU or memory,
while it is executing.

9. CONCLUSIONS

What has been presented is a policy-based architecture for
the authorisation of software downloads for use in
association with SDR technologies. This architecture is
fundamentally based on the deployment of a security
proxy server in every predefined domain, which is
responsible for the safety verification of incoming code
via the use of various security checking mechanisms in
conjunction with interactions with other security proxies
which are predefined by a specified policy statement. This
checking process then results in the output of an attribute
assertion which is used by the end host device in
conjunction with predefined device policy statements to
map a set of privileges to executables via the assignment
of roles. As regards future work, it is clear from this paper
however, that there are many obstacles to be overcome as
regards the smooth implementation of this framework.

10. REFERENCES

[1] E. Gallery, “Towards a Policy-based Framework for Mobile

Agent Authorisation in Mobile Systems”, 3G 2003, June
2003.

[2] M. Blaze et al., “RFC 2704, The Keynote Trust-
Management System Version 2”, IETF, 1999.

[3] N. Damianou, N. Dulay, E. Lupu and M. Sloman, “Ponder:
A Language for Specifying Security and Management
Policies for Distributed Systems”, Imperial College
Research Report, DoC, 2001/2.

[4] OASIS, “Assertions and Protocol for the OASIS Security
Assertion Markup Language V1.1”, 2002.

[5] A. Herzberg , Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid,
“Access Control Meets PKI, Or: Assigning Roles to
Strangers”, IEEE Syposium on Security and Privacy,
Oakland, CA, May 2000.

[6] E. Ray, “Learning XML”, pp326, 2001.
[7] R.L. Rivest and Robert D. Silverman, “Are ‘Strong’ Primes

Needed for RSA?”, RSA Data Security, 1998.
[8] W. Stallings, “Cryptography and Network Security”,

Principles and Practise, 2nd Edition, Prentice-Hall, 1999.
[9] A. Arsenault and S. Turner, PKIX working group, “Internet

X.509 Public Key Infrastructure: Roadmap”, July 2002.
[10] F. Gomes, “Security Alert: Fraudulent Digital signatures”,

Sans Institute, Information Reading Room, June 7, 2001.
[11] C.P. Fleeger, “Security in Computing”, Second Edition,

Prentice-Hall, 2000.
[12] A. Rossnagel, et al., “Die Simulationsstudie Rechtspflege.

Eine neue Methode zur Technikgestaltung für
Telekooperation”, Berlin, 1994.

[13] CERT® Coordination Center, “Denial of Service Attack”,
Carnegie Mellon, Software Engineering Institute.

[14] G. Necula and P. Lee, “Safe, Untrusted Agents Using
Proof-Carrying Code”, LNCS 1419, pp61-91, 1998.

[15] D. Gollman, “Computer Security”, Wiley, 2001.

11. ACKNOWLEDGEMENTS

The work reported in this paper has formed part of the WA1 area of the
Core 2 Research Programme of the Virtual Centre of Excellence in
Mobile & Personal Communications, Mobile VCE,
www.mobilevce.com, whose funding support, including that of EPSRC,
is gratefully acknowledged. More detailed technical reports on this
research are available to Industrial Members of Mobile VCE.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

