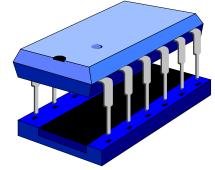


Understanding FPGA Tradeoffs for Software Radio Applications

Rodger Hosking Pentek, Inc.

Software Defined Radio Forum Conference Orlando • November 2003



Trends with time ------

Traditional Programmable Logic

- Used primarily to replace discrete digital hardware circuitry for:
 - Control logic
 - Glue logic
 - Registers and gates
 - State machines
 - Counters and dividers

- Devices were selected by hardware engineers
- Programmed functions were seldom changed after the design went into production

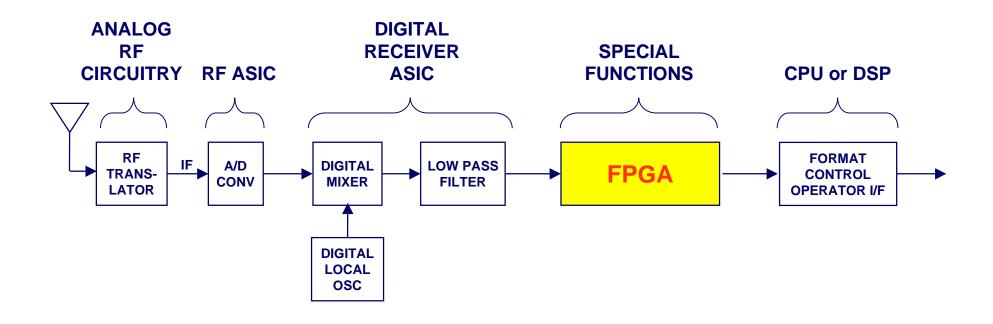
FPGAs - New Device Technology

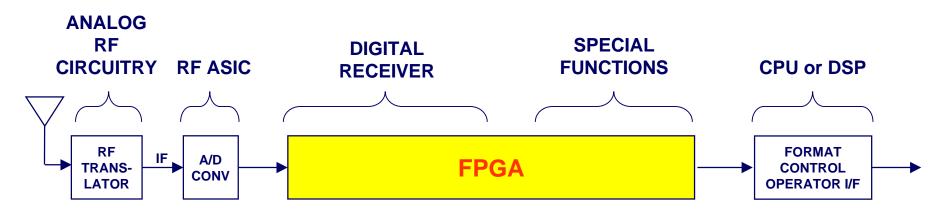
- On-chip processor cores
- Internal clock rates up to 600 MHz
- Reduced power with core voltages approaching 1 volt
- Dedicated on-chip hardware multipliers
- Memory densities of over 10 million bits
- Flexible memory structures
- Logic densities of over 10M gates
- Silicon geometries near 0.1 microns
- High-density BGA and flip-chip packaging
- On-board giga-bit serial interfaces
- Over 1200 user I/O pins
- Numerous configurable interface standards

FPGAs - Enhanced Development Tools

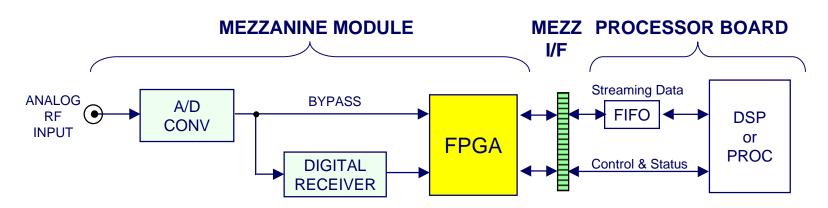
- High Level Design Tools
 - Block Diagram System Generators
 - Schematic Processors
 - High-level language compilers for VHDL & Verilog

- Advanced simulation tools for modeling speed, propagation delays, skew and board layout
- Faster compilers and simulators save time
- Graphically-oriented debugging tools
- IP (Intellectual Property) Cores
 - FPGA vendors offer both free and licensed cores
 - FPGA vendors promote third party core vendors
 - Wide range of IP cores available


FPGAS: Key Benefits for Software Radio


- Parallel Processing
- Hardware Multipliers for DSP

- FPGAs can now have over 500 hardware multipliers
- Flexible Memory Structures
 - Dual port RAM, FIFOs, shift registers, look up tables, etc.
- Parallel and Pipelined Data Flow
 - Systolic simultaneous data movement
- Flexible I/O
 - Supports a variety of devices, buses and interface standards
- High Speed
- Available IP cores optimized for special functions

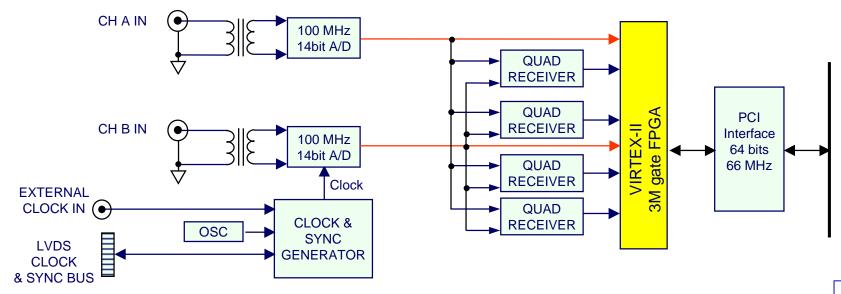


Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

7

Software Radio Modular Products

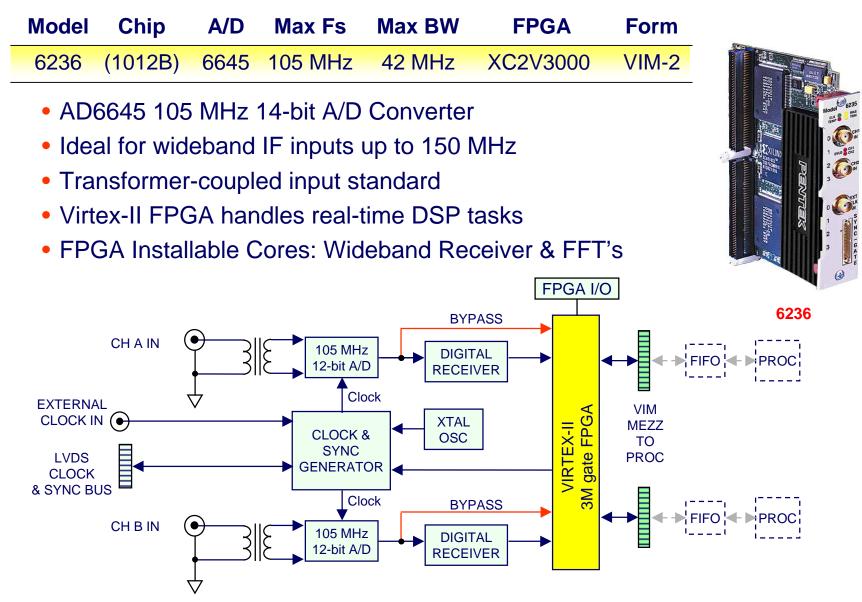
- Mezzanine Module
 - Input Interface (A/D or digital interface)
 - Digital Receiver ASIC (optional)
 - FPGA
- Processor Board
 - Bi-directional FIFO Buffer
 - DSP or RISC Processor



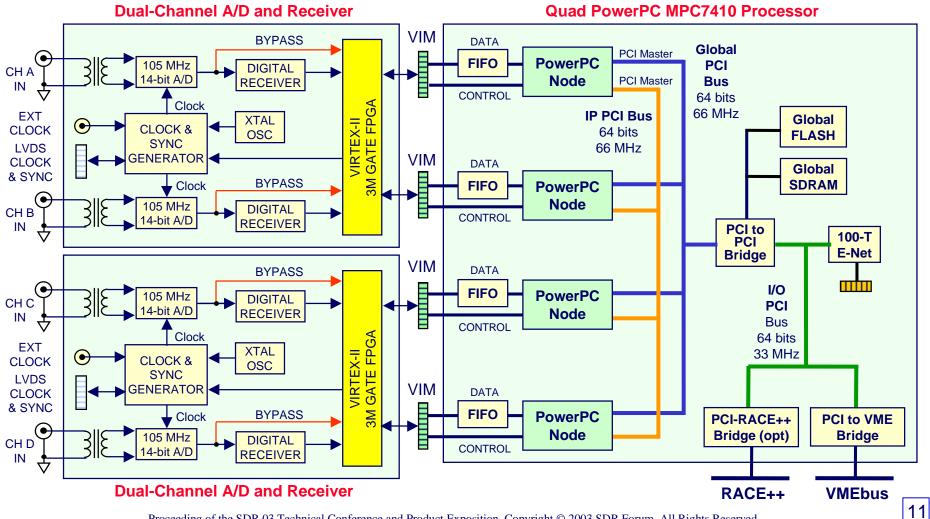
16-Channel Narrowband Rcvr & A/D

Model	Chip	A/D	Max Fs	Max BW	FPGA	Form
7131	GC4016	6645-105	105 MHz	10 MHz	XC2V3000	PMC

- Transformer coupled input for IF sampling
- Device drivers for VxWorks
- Suitable for low cost generic platforms



Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



2-Channel Wideband Receiver & A/D

REF JTEK **Complete Receiver System for VME**

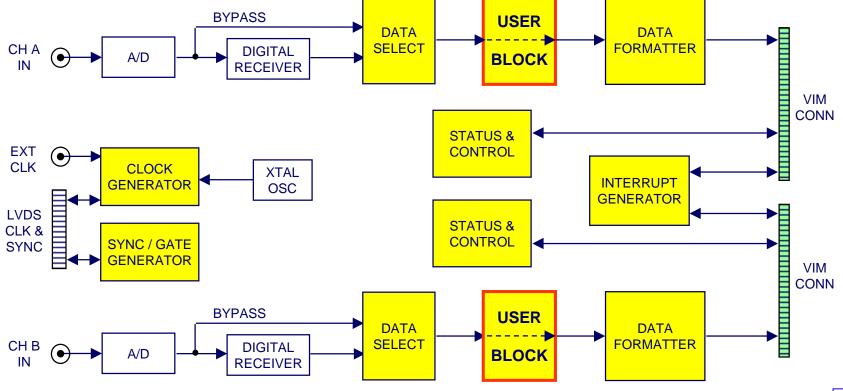
Quad A/D & Recvr, Dual FPGA, and Quad Power PC

	Virtex-E		Virtex-II		Virtex-II Pro		
	XCV300E	XCV600E	XC2V1000	XC2V3000	XC2VP30	XC2VP40	XC2VP50
Logic Cells	6,912	15,552	11,520	32,256	30,816	43,632	53,236
System Gates	412k	986k	1000k	3000k			
Max Block RAM (bits)	131k	295k	720k	1,728k	2,448k	3,456k	4,176k
Max I/O User Pins	316	512	432	720	644	804	852
18 x 18 Multipliers	-	-	40	96	136	192	232
Power PCs	-	-	-	-	2	2	2
Gbit Transceivers	-	-	-	-	8	12	16

Three Software Radio FPGA Strategies

- FPGA Design Kit
 - Allows custom extensions to standard modules
 - Includes VHDL factory configuration source code
 - User block in data path simplifies development
- IP Core Libraries
 - High-Performance Software Radio Algorithms
 - Highly Optimized for Specific FPGAs
 - Exploits Parallelism of FPGA Hardware
- Factory Installed Cores
 - Pre-configured and installed IP functions
 - No customer FPGA development required
 - Performance optimized for specific modules

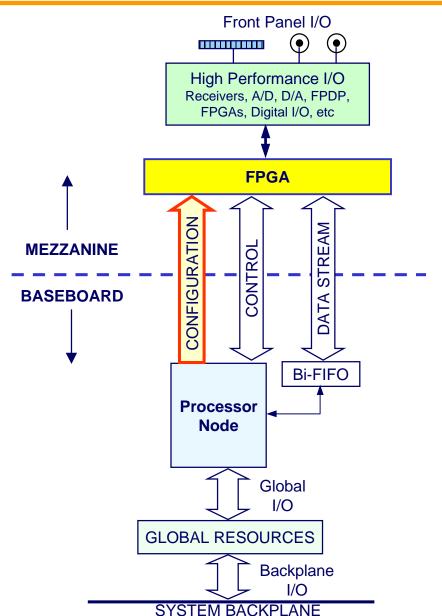
 Allows FPGA design engineers to easily add functions to standard factory configuration



- Includes VHDL source code for standard functions:
 - Control and status registers
 - A/D and Digital receiver interfaces
 - Mezzanine interfaces
 - Triggering, clocking, sync and gating functions
 - Data packing and formatting
 - Channel selection
 - A/D / Receiver multiplexing
 - Interrupt generation
 - Data tagging and channel ID
 - Default User Block for inserting custom code

Typical FPGA Code Modules

- Simplified view of VHDL source code modules
- User Block modules are configured as default "straight wire" connections



Processor Reconfiguration of FPGA

- FPGA Loader Utility
 - FPGA configuration loader utility executes on processor
 - Supports easy FPGA reconfiguration during runtime for adaptive processing
 - Supports easy FPGA reconfiguration for field upgrades
 - Eliminates need to disassemble system to modify hardware
 - Extends product longevity


IP Core Library Functions

Core	Description
401	1k-point Quad Radix-4 Complex FFT
403	4k-point Single Radix 4 Complex FFT
404	4k-point Quad Radix-4 Complex FFT
421	140 MHz Wideband Digital Down Converter
422	280 MHz Wideband Digital Down Converter
440	Radar Pulse Compressor

- Suitable for any Xilinx FPGA Platform
- Licensing based on Xilinx SignOnce[™] Project License
 - Customers use a common, pre-approved standardized license
 - Streamlines legal process and simplifies ordering
 - Core may be incorporated into any single project or product
 - No limit on the number of licensed products produced

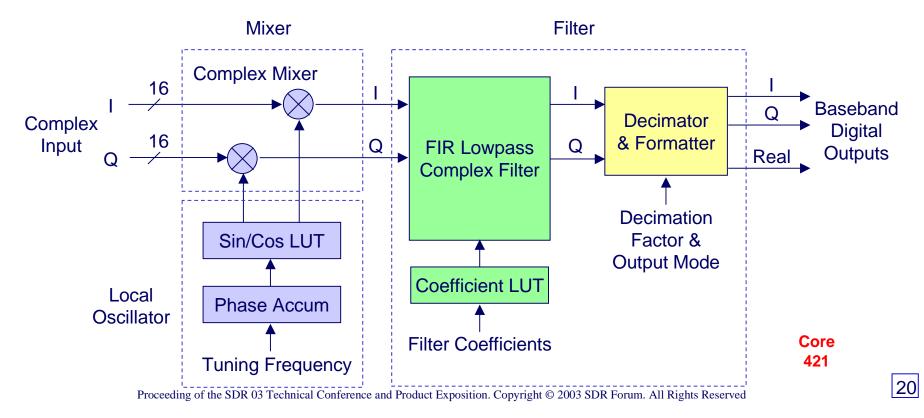
Quad Parallel Pipelined 4k FFT

- Core 404: 4,096-point parallel pipelined Quad FFT
- Four input & output streams at 25% offset
 - Four input/output points for each input clock
- FFT calculation time:
 - Four FFTs are computed in parallel every 4096 clocks
 - Effective Calculation for each FFT = 4096 clocks / 4 = 1024 clocks
 - 100 MHz Clock Example: 4k FFT Time = 1024 x 10 ns = 10.24 usec

- FFT Calculation Time Depends on FPGA Clock
- FPGA Clock = Data Source Sample Clock

Maximum FPGA clock rates depend on Xilinx speed grade

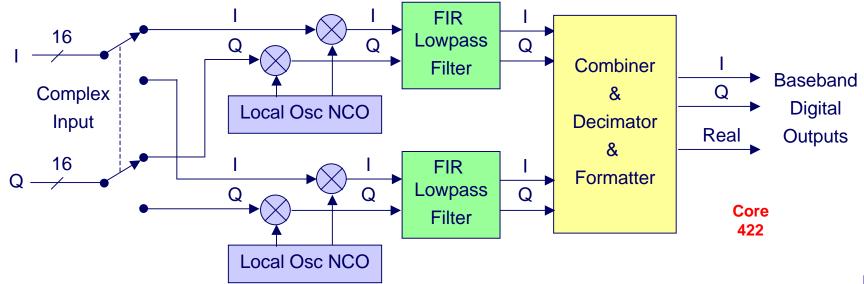
Xilinx FPGA Speed Grade	Max Clock	Core 404 Quad 4k FFT Quad
-6	140 MHz	7.31 usec
-5	127 MHz	8.06 usec
-4	111 MHz	9.23 usec
(reference)	100 MHz	10.24 usec


- Comparison to 4k FFT Calculation on Programmable Processors
 - 500 MHz G4 AltiVec PowerPC: 105 usec (VSIPL Library) > 10X
 - 300 MHz TMS320C6203 DSP: 212 usec (TI Benchmarks) > 20X

Single Stage Digital Receiver

- Operates at input clock rates to 140 MHz
- Real or complex output, spectrum inversion & offset

- Requires XC2V1500 Xilinx Virtex-II FPGA (or larger)
- Two will fit inside the XC2V3000

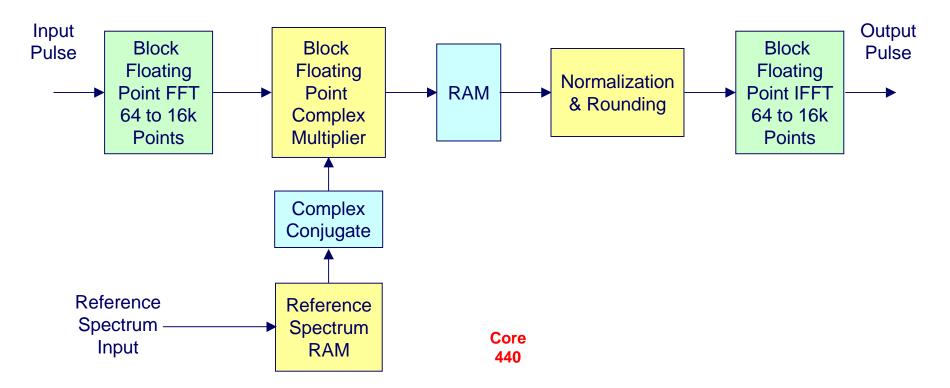


Dual Stage 2x Digital Receiver

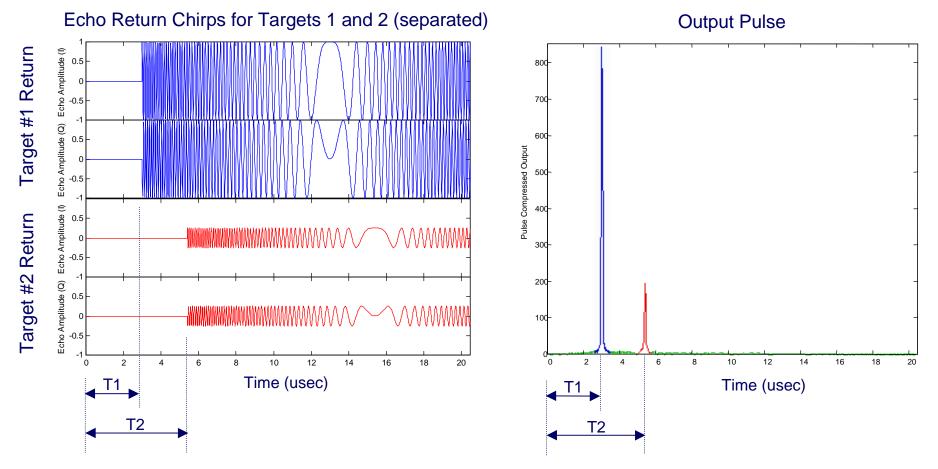
- Operates at input clock rates to 280 MHz
- Same performance and features as single stage DDR

- Demultiplexer sends alternate input samples to each stage
- Each stage operates at one half the input clock rate
- Formatter combines two stages into a single output
- Requires XC2V3000 Xilinx Virtex-II FPGA (or larger)

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

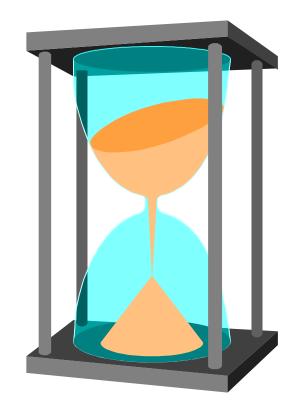


Comparison: ASIC vs. FPGA

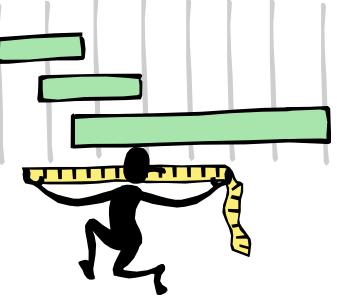

	GC1012B	IP Core 421	IP Core 422
Input Resolution	12 bits	16 bits	
Input Format	Real Only	Real or Complex	
Maximum Input Data Rate	100 MHz	148 MHz	296 MHz
Maximum Input Bandwidth	50MHz	74 MHz	148 MHz
NCO Frequency Resolution	28 bits	32 bits	
NCO Phase Offset	None	32 bits	
NCO Output Resolution	12 bits	18 bits	
NCO (SFDR)	75 dB	110 dB	
Mixer Output Resolution	13 bits	17	bits
Number of FIR Filter Sets	Two	Four	
FIR Filter Programmability	Fixed	User Programmable	
FIR Coefficient Resolution	14 bits	18 bits	
Default 80% Filter Ripple	±0.1 dB	±0.04 dB	
Default 80% Image Rejection	75 dB	100 dB	
Output Resolution	10 to 16 bits	16 or 24 bits	

- Operates at data rates up to 150 MHz
- 16-, 20- or 24-bit Resolution
- Block Floating Point arithmetic preserves dynamic range

- Minimum frame spacing (maximum throughput version)
 - 64 point FFT: 1.57 usec
 - 8k point FFT: 198 usec


Tradeoffs: ASIC vs. FPGA

- When to Use an ASIC Digital Receiver
 - FPGA implementations may require power and cost tradeoffs of 5 to 10 times over ASICs
 - ASIC designs have more a complete feature set
 - ASIC designs are more more thoroughly tested, characterized and documented
 - ASIC filter designs are often optimized with specialized hardware structures that may be difficult to replicate
 - Gain and scaling often consume many hours of optimization


Tradeoffs: ASIC vs. FPGA

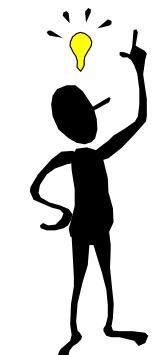
- When to Use an FPGA Digital Receiver
 - Specialized phase and frequency control of the NCO for complex FSK and frequency agile signals
 - Tight delivery schedules
 - Limited volume production
 - Unusual output resampling requirements
 - Custom filtering requirements not met by down loading FIR coefficients into the ASIC

SW Radio FPGA Design Guidelines

- FPGA benchmarks can be misleading
 - Make sure you allow for data movement both in and out of the FPGA
 - Make sure external devices or interfaces are compatible with the benchmark clock of the FPGA
 - Make sure the calculation accuracy (number of bits of precision) is sufficient
 - Check exception handling overflows, saturation, and divide by zero
 - Take advantage of bit-true simulation tools

SW Radio FPGA Design Guidelines

- Be careful in trying to replace standard ASIC solutions with FPGA designs
 - ASICs usually consume less power than the FPGA counterpart
 - Full characterization of a new FPGA function over all operational modes may consume significant engineering time
 - Minor changes to FPGA designs can often impact performance in unexpected ways
 - Test benches take time to develop but can be useful in validating new changes
 - Software system development tools (like MATLAB) help shorten FPGA VHDL design cycles



- Be careful in trying to replace programmable DSP functions with FPGA designs
 - Memory requirements often grow unexpectedly -especially for upgrades
 - DSPs have native support for large SDRAMs with lower cost and power per bit than FPGA RAM
 - Take advantage of SDRAM controllers now available as IP cores for FPGAs
 - Changes to FPGA code may require an new FPGA pin-out and, therefore, a new PC board!


FPGA Benefits for Software Radio

- Replace ASIC functions with custom features
- Perform algorithms faster and easier than with a DSP
- Handle signal processing tasks not possible with a DSP
- Reduce data rates by pre-processing data at front end
- Take advantage of available IP cores
- Support re-configurable processing & field upgrades
- Avoid product obsolescence extend product life cycles
- Protect proprietary algorithms and IP inside FPGAs

- For additional information:
 - Pentek: www.pentek.com
 - GateFlow: www.pentek.com/gateflow
 - Xilinx: www.xilinx.com
 - Altera: www.altera.com
 - Mathworks: www.mathworks.com

