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The most common application of interpolators in a modern 
communication system is the 1-to-4 up sampling operation 
to which waveform samples are subjected prior to being 
presented to the digital to analog converter. The increase in 
output sample rate by a factor of four obtained by the 1-to-4 
interpolator increases the spacing between the spectral cop-
ies of the periodic spectrum processed by the DAC and sub-
sequent analog smoothing filters. This increased separation 
allows us to employ a low order analog filter to complete the 
required filtering action, the spectral suppression of the re-
sidual spectral terms seen at the output of the DAC. Re-
member when the advertisement for CD player proudly pro-
claimed “4-Times Oversampled”? The Signal processing 
chain for the CD is shown in figure 1. 

 
1.ABSTRACT 

 
A common task in software defined radio receivers is that of 
changing the synchronous sample rate of the input modula-
tion process to a fixed asynchronous sample rate required by 
the output D-to-A converter. Fixing the sample rate at the 
output D-to-A converter permits a wide range of modulation 
bandwidths to be serviced by a single fixed bandwidth signal 
conditioning analog filter. A similar comment is appropriate 
for signal conditioning at the input to A-to-D converters. 
The process that changes the bandwidth and sample rate of a 
digital signal is known as decimation or down sampling and 
as interpolation or up sampling. It is a fairly simple matter to 
digitally change the sample rate of a digital signal by a ra-
tional ratio. Arbitrary ratio resampling requires an approxi-
mation that forms spectral artifacts that are well understood 
and controllable to arbitrarily small levels by appropriate 
design considerations. This paper reviews the relationship 
between filter complexity and performance requirements and 
then presents an efficient and flexible filter structure to real-
ize arbitrary resampling ratios. 
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2. INTRODUCTION Figure 1 Four-to-One Up Sampling Chain In CD Player 

 The length of a digital filter is determined by its specifica-
tion in accord with the relationship shown in figure 2 and in 
equations 1 and 2. The relationship shown in equation 2 is a 
good first order approximation for FIR filters designed by 
windowing or by the Remez algorithm with equal pass band 
and stop band ripple. 

Webster’s Second Collegiate dictionary lists, in its third en-
try, a math definition of interpolate as: “to estimate a miss-
ing functional value by taking a weighted average of known 
functional values at neighboring points”. Not bad! That cer-
tainly describes the processing performed in a multirate fil-
ter. Interpolation is an old skill that many of us learned in a 
different era before the advent of calculators and key strokes 
replaced tables of transcendental functions such as log(x) 
and the various trigonometry functions. Take for example 
the NBS Applied Mathematics Series, AMS-55 “Handbook 
of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables” by Abramowitz and Stegan. This pub-
lication contains tables listing functional values of sin(θ) for 
values of θ equal to …40.0, 40.1, 40.2,….,etcetera. Interpo-
lation is required to determine the value of sin(θ) for the 
value of θ equal to 40.137. Interpolation was such an impor-
tant tool in numerical analysis that three pages in the intro-
duction of the Handbook are devoted to the interpolation 
process. Interpolation, an old art, continues in the modern 
era as an important tool used in modern communication sys-
tems. We now discuss where interpolation is used in these 
systems and then present efficient implementations of the 
process. 
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Figure 2 Parameters of Sampled Data Low-Pass Filter 
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A cascade of two half-band filters is more efficient than a 
single 1-to-4 up sampler because the second half-band re-
quires significantly fewer coefficients than the first filter. 
This is because of its wider transition bandwidth commensu-
rate with the increased separation between spectral copies as 
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a result of the up sampling by the first filter. True half-band 
filters are used in the interpolator to take advantage of the 
fact that alternate samples in the half-band impulse response 
are exactly zero hence half the coefficients in the impulse 
response do not contribute to the processing workload. The 
first half-band filter is designed to operate at 2fs or 88.2 kHz 
with a transition bandwidth of 4.1 kHz, and present 100 dB 
attenuation to the next spectral copy centered at 44.1 kHz. 
Equation 2 estimated the required filter length to be 141 taps 
with the actual filter length found to be 133 taps with 66 
non-zero weights. The second filter is designed to operate at 
4fs or 176.4 kHz with a much wider transition band of 42.2 
kHz, and present the same 100 dB attenuation to the next 
spectral copy centered at 88.2 kHz. Equation 2 predicted the 
required filter length to be 27 taps with the actual designed 
filter length required 25 taps with 10 non-zero weights.  

The signal flow structure of the two-stage interpolator 
is shown in figure 3. For each input sample the first stage 
forms two output samples from its two-port commutator. 
The workload for the two output samples is 66 multiplies. 
The second filter also forms two output samples for each 
input sample delivered to it. For each input sample to the 
first filter, two samples are passed to the second, which cy-
cles through its output port twice to deliver a total of 4 out-
puts per input. The second filter requires 12 multiplies per 
pair of outputs. The total workload for the 4-output samples 
is 66 + 12 + 12 or 90 which when amortized over the 4 out-
put samples is 22.5 multiplies per output sample. If the de-
signer can take advantage of the even symmetry of the filter 
weights, the number of multiplies can be reduced by a factor 
of 2. The impulse response and frequency response of the 
two filters in the filter chain are shown in figure 4. 
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Figure 3 Two Stage 1-to-4 Up Sampler Filter for CD Signals 

An up sample by 4 interpolator is also used in the shaping 
filter path of most digital modulators. In this application, a 
two stage filter is composed of a 1-to-2 SQRT-Nyquist shap-
ing filter followed by a 1-to-2 interpolating filter that collec-
tively form shaped data samples at 4-samples per input sym-
bol. This structure is shown in figure 5. Here the SQRT-
Nyquist shaping filter has an excess bandwidth of 25% and 
requires its length to extend over 20 symbols to obtain spec-
tral side lobes 60 dB below its main lobe level. 
      The 1-to-2 interpolator is a half band filter of length 21 
with 10 non-zero weights. The cascade forms 4-output sam-
ples for each input sample with the shaping filter performing 
40 multiplies per input sample and the interpolator perform-
ing 10 multiplies per pair of output samples for a total work-
load of (40 + 10 + 10) or 60 multiplies. Amortizing the 60 

multiplies over the 4 output samples we find the workload is 
15 multiplies per output sample. Impulse response of the 
shaping filter and of the interpolating filter along with their 
respective spectra are shown in figure 6. 
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Figure 4 Impulse and Frequency Response Half-Band Interpolators 
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Figure 5 Modulator Shaping Filter at 4-Samples Per Symbol 

 
3. RATIONAL RATIO RESAMPLING  

 
Rational ratio resampling interpolating filters find use in 
both modulators and demodulators. In modulators they are 
used to raise the samples rate of data samples from the shap-
ing filter operating at 4-samples per symbol up to the desired 
fixed output sample rate. In some flexible systems, the input 
symbol rate is arbitrary, user selected from a specified range 
such as 10 kHz to 10 MHz, while the output sample rate is 
fixed by the analog-smoothing filter chosen to satisfy the 
sample rate of 4-samples per symbol at the maximum sym-
bol rate. Another application requiring an interpolating up 
sampler is the set of modulators in which the spectral trans-
lation to the first intermediate frequency is performed in the 
DSP domain using digital multipliers as opposed to in the 
analog domain using matched balanced mixers. Block dia-
grams presenting these applications are shown in figures 7 
and 8. When the up sampling ratio is restricted to 1-to-M, for 
an arbitrary M, and if the platform is an ASIC or an FPGA, 
the up sampling is often performed with a variant of the cas-
cade integrator comb filter (CIC) known as the Hogenauer 
Filter. The up sampling factor “M” of the CIC has an upper 
limit bounded by the register width of the internal accumula-
tors and a lower limit of 16 or 20 a restriction required to 
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have the pass-band band width span the 4-times oversam-
pled input spectrum. We leave the CIC now and continue 
with the rational then arbitrary ratio resampling options. 
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Figure 6 Impulse Responses of Shaping Filter and 1-to-2 Interpola-

tor with their Frequency Responses 
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Figure 7 Interpolator Following Shaping Filter to Change 
User Defined 4fsym to Fixed System Clock fX 
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Figure 8 Interpolator Following Shaping Filter to Increase Sample 
Rate for Digital IF Up Conversion 

In the first order approach to up sampling we first zero pack 
the input data 1-to-M to raise the sample rate and thus access 
the M-fold multiple Nyquist zones. We then filter the zero 
packed data with a filter designed to suppress all the unde-
sired spectral replicates. Knowing there is no need to process 
the inserted zeros we recast the filter into an M-path poly-
phase filter and then invoke the noble identity to pull the up 
sampler through the filter so that it resides at the filter output 
rather than at the filter input. Doing so allows us to perform 
the filtering at the low input rate rather than at the higher 
output rate. In the modified form, the up sampling is accom-
plished as the output commutator cycles through the M-
paths of the polyphase partition. We are about to examine 

the polyphase partition but before doing so we should de-
termine the workload of each polyphase path of the M-path 
partition. We estimate the workload with the aid of figure 9, 
which shows the periodic spectrum we would obtain by zero 
packing a shaped spectrum that had been initially up sam-
pled to 4-samples per symbol. Here the shaped spectrum is 
assumed to have an excess bandwidth of 0.5 so that the nor-
malized two sided bandwidth is 1.50 with spectral replicates 
located at integer multiples of 4. The overlaid spectrum indi-
cates the pass band and the transition bandwidth required of 
the interpolation filter. These specifications are cast explic-
itly listed in table 1. Remember this M-path filter is chang-
ing the normalized sample rate from 4 to 4 M. 

 
Figure 9. Periodic Input Spectrum and Filter Response of 1-to-M 

Interpolator Filter 
Parameters Values 

Pass Band Ripple 0.1 dB 
Stop Band Attenuation 60 dB 
Pass Band Frequencies 0-to-0.75 
Stop Band Frequencies 3.25-to-2 M 

Sample Frequency 4 M 

Table 1. Filtering Specifications for M-Path Polyphase Filter 
An estimate of the number of filter taps required to imple-
ment the 1-to-M interpolating filter is obtained from stan-
dard estimate such as presented in equation 2. A variant of 
this equation, valid for 0.1 dB in-band ripple, is shown in 
equation 3, which when applied leads to the estimate shown 
in equation 4. When we partition the filter into M paths as 
shown in equation 5, we obtain the ratio N/M, which is the 
number of coefficients per path. Here we see that the number 
of taps is a small number, either 5, a conservative choice or 
4, an option accessible by widening the transition bandwidth 
to overlap the replica spectra. We can also ask the Remez 
algorithm to form multiple stop bands spanning the locations 
of the spectral replicates with don’t care intervals between 
the stop bands and thus allow the algorithm to redistribute 
stop band zeros to frequency intervals that need the suppres-
sion. After all, why hold down a frequency span known not 
to contain energy by virtue of the previous interpolating fil-
ter attached to the shaping filter?  
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In either case, the interpolating M-path filter has a small 
number of taps per path. We still have to determine M, the 
number of paths. Figure 10 presents the periodic spectra and 
a detailed zoom we would see if we had zero packed the 
input signal along with the frequency response of the M-
stage interpolating filter for the specific case M=32. Figure 
11 presents the spectra observed at the output of the 1-to-32 
interpolating filter. The structure of the M-path polyphase 
filter is shown in figure 12. 

While on the topic of selecting filter coefficient sets from a 
memory bank, we realize that we have the option to skip 
filter sets and thus perform simultaneous down sampling 
along with the up sampling. This option is suggested in fig-
ure 14. The up M, down Q, rational ratio resampling pro-
ceeds as follows: an input sample arrives and we compute 
M/Q output samples by incrementing through weight sets in 
memory in stride of length Q. 
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Figure 12 Polyphase Partition of M-Path Resampling Filter 
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Zero-Packed Shaping Filter 
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Figure 13. Efficient 1-to-M Polyphase Interpolator 
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Figure 14 Rational Ratio Resampling by following 1-to-M Up 

Sampler with Q-to-1 Down Sampler 
Figure 11. Spectrum of 1-to-32 Interpolated Shaping Filter 
We note the polyphase arms contribute their outputs one at a 
time as the commutator points to successive output ports. 
We also note that the separate filters all contain the same 
input data and only differ by their unique coefficient sets. 
We can replace the M-path version of the polyphase filter 
with a single stage filter with M-coefficient sets that are se-
quentially presented to the filter to compute successive out-
puts. This structure is shown in figure 13. What we have 
accomplished here is first move the input commutator that 
performed the input zero packing to the output of the filter 
where it selected successive filter outputs and then again 
moved the commutator to coefficient memory bank where it 
selected successive coefficient sets rather than filter outputs. 

 
4. ARBITRARY RESAMPLING INTERPOLATORS 

 
The increment by Q addressing described in the last section 
is performed modulo M, the number of available stages. 
When the modulo operation is invoked, the address wraps to 
or past the top of the address stack. The wrap indicates that 
we have crossed the boundary that defines the interval be-
tween input samples and that a new input sample must be 
delivered to the data register. Rational ratio resampling can 
be converted to arbitrary ratio resampling by allowing Q to 
be a non-integer and then bringing into play a mechanism to 
accommodate the fractional part of the address shift. The 
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fractional part of the desired address increment can be visu-
alized with the aid of figure 15. 
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Figure 17 Timing Jitter: Sampling of Virtual DAC Output for In-
terpolated Sample Values 

Figure 15 Interpolating to a Position Between Available Output 
Points in an M-Path Interpolator 

A simple option for arbitrary resampling with a polyphase 
interpolator is to assign the sample value obtained from the 
nearest neighbor sample location. This nearest neighbor re-
placement is shown in figure 16. In practice, nearest 
neighbor can be replaced by the neighbor to the immediate 
left. This is equivalent to truncating the desired offset value 
rather than rounding the desired offset value. 
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Our upper bound to the errors due to the timing jitter is 
found by examining the spectrum of the signal obtained 
from maximally up sampled virtual DAC. In this analysis we 
model the spectrum of the original sampled signal as uni-
form and of unity bandwidth, which is a reasonable ap-
proximation to a Nyquist shaped spectrum in a communica-
tion system. A signal originally formed with a sample rate 
that is 4-times the input bandwidth is now up sampled to a 
new sample rate N times its Nyquist rate with an N/4 stage 
interpolator. The important parameter here is the output 
sample rate N. The spectrum of the up-sampled signal at the 
input and output of the DAC processed signal is shown in 
figure 18. The frequency response of the DAC is the stan-
dard sin(x)/x, shown in eq-6, with zeros located at multiples 
of the output sample rate. These zeros suppress the spectral 
copies centered at multiples of the sample rate but leave a 
residual spectrum in the neighborhood of the spectral zero. 

Figure 16 Replacing Desired Sample Value with Nearest Neighbor 
Sample Value 

The sample value errors formed over successive output sam-
ples are modeled as timing jitter errors. The local slope and 
the time difference between adjacent interpolated samples 
bound the amplitude of these errors. This bound can be made 
arbitrarily small by increasing the sample rate and reducing 
the interval between adjacent interpolated values. When the 
amplitude errors are smaller than the errors due to amplitude 
quantization of the sample values, the timing jitter errors do 
not degrade the quality of the interpolated samples. A simple 
way to estimate the size of the timing jitter errors is to de-
scribe the errors due to nearest neighbor replacement as an 
equivalent linear process and then estimate the errors in that 
process. We do this by imagining that we interpolate the 
input series to the maximum output sample rate of M-time 
sthe input rate to form an analog signal with a perfect DAC 
or zero order hold, and then resample this virtual analog 
waveform at the desired time locations. This model is shown 
in figure 17. 

Figure 18 Spectrum of Up-Sampled Signal at Input and Output of 
Virtual DAC 

The DAC spectral response shown in equation 6, and 
its first derivative is shown in equation 7. Evaluating equa-
tion 7 at the first zero crossing of the spectrum, at f = 1/T, 
we obtain the results shown in equation 8. 
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The Taylor Series expansion of the DAC’s spectral response 
at the first zero crossing , fS or 1/T, is shown in equation 9. 

                                        1( )H f f
fs

∆ =− ∆                                     (9) 

Substituting the sample rate indicated in the normalized fre-
quency axis presented in figure 24, we obtain the local Tay-
lor series shown in equation 10. 

                                        1( )H f f
N

∆ = − ∆                                   (10) 

A zoom to the spectral response of the DAC in the 
neighborhood of the first spectral zero is shown in figure 19.  
 

Figure 20 Shaping Filter: Time and Frequency Response Four 
Times Oversampled 
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By way of example, consider interpolating a time se-
ries represented by 8 bit samples. For this case, if we operate 
the interpolator to obtain a maximum output sample rate 128 
times the signal bandwidth, the noise spectrum due to near-
est neighbor interpolation will be below the noise caused by 
the signal quantization process. If the input signal is origi-
nally oversampled by a factor of 4, the interpolator must 
make up the additional factor of 128/4 or 32. Thus a 32-
stage interpolator can resample an 8-bit input signal with 
jitter related noise levels below the -48 dB dynamic range 
noise level of the 8-bit quantized data. Figure 20 presents the 
time and spectral response of a 45-tap filter response that is 
initially oversampled by a factor of 4. Note the spectrum is 
scaled for two sided 6-dB bandwidth of “1” for which the 
sample rate of “4” is presented on an axis of ±2. 

Figure 19 Frequency Response at DACs First Spectral Null 
The maximum amplitude of the residual spectrum centered 
about the first spectral null, obtained by substituting 1/2 for 
∆f, is seen in equation 11. 
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The smallest resolvable signal level of a b-bit quantizer is   
2-b. If the residual spectral levels at the output of the DAC 
are below this level, the errors attributed to the timing jitter 
of the nearest neighbor interpolator is below the quantization 
noise level of quantized signal samples. To assure this 
condition, the maximum spectral level of the residual spec-
trum must satisfy the condition shown in equation

Figure 21 presents the time and frequency response 
obtained by applying the interpolation process to resample 
the time response of figure 20. The sample rate change 
shown here is 32/6.4, a sample rate change of 5. This sample 
rate change is obtained by the stepping through the 32 output 
commutator port indices by the integer part of an accumula-
tor that is incremented in steps of 6.4. The number of output 
samples formed by the interpolation process is seen to be 
245 points. The spectrum obtained by the interpolation proc-
ess clearly shows the 4-spectral regions at multiples of the 
input rate that have been suppressed by the sin(x)/x response 
of the virtual DAC employed by the nearest neighbor inter-
polator. The level of suppression is 50 dB, 2-dB more than 
the maximum 48 dB level estimated in eq-12. This apparent 
excess attenuation is due to the fact that the spectral ampli-
tude at the 0.5 band edge is less than unity due to its transi-
tion roll off. The reduced spectral occupancy lowers the ∆f 
in eq-11 and results in a reduced level estimate for the 
maximum amplitude spectral residue. 

 12. 

                                      ( 1)1 1   or  2
2 2

b
b N

N
−< >                            (12) 

The virtual analog signal described by the up sampling con-
dition satisfying equation 12 can now be sampled at any 
output rate that satisfies the Nyquist criterion for the input 
bandwidth. The aliasing terms that fold into the primary Ny-
quist zone are the multiple residual spectra residing at the 
successive spectral nulls of the DAC interpolator. The am-
plitudes of the aliasing terms inherit the alternating signs and 
1/M gain terms of the DACs sin(x)/x. The alternating signs 
of the successive alias terms limit the composite spectral 
growth to unity. Thus the collective aliases of all the residual 
spectra from the DACs spectral zero crossings to the Nyquist 
interval of the new sample rate do not rise above the highest 
level of 1/(2N). 
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Figure 21. Time and Frequency Response of 32/6.4 Nearest 

Neighbor Interpolator 
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Figure 22. Time and Frequency Response of 32/6.37 Nearest 

Neighbor Interpolator 
For comparison figure 22 shows the time and spectral 

response when the same 32-stage interpolator is incremented 
in steps of 6.37 to obtain a sample rate change of 32/6.37 or 
5.0235. The slighter higher sample rate presents 246 instead 
of the 245 output samples of the previous example. We note 
here that the aliases no longer fold to four common frequen-
cies and now appear over the entire span of the new Nyquist 
interval of width 4* 5.0235 or 20.094. 
 

5. CONCLUSIONS 
 
We have shown that nearest neighbor interpolation in a 
polyphase filter bank containing a sufficient number of paths 
can control the level of spectral artifacts due to the timing 
jitter caused by the nearest neighbor timing approximation. 
Since many signals presented to an interpolator have already 
been up sampled by a factor of 4, the required amount of 
additional up sampling, or the number of polyphase paths is 
surprising small, only 32 paths to obtain 48 dB suppression. 

The advantage of having the input spectra initially oversam-
pled by 4 is that the length of each polyphase interpolator 
path is only 4, or occasionally 5 taps. Thus the arbitrary in-
terpolator only requires a 4-tap or a 5-tap filter with an ac-
cess to 32 weight sets. We note that the number of weight 
sets increases by a factor of 2 for every additional 6-dB of 
spectral suppression. We have implemented systems with 
256 sets of weights. Remember, weight sets only use mem-
ory, not processing power. In pursuit of significantly more 
spectral suppression, say 100 dB, we can exchange memory 
for computation in the following manner. We achieve 100 
dB suppression levels with a polyphase filter containing 48 
paths and then use this filter to interpolate to both nearest 
neighbors, the floor integer offset to the left and the ceiling 
integer offset to the right and then linearly interpolate be-
tween these interpolated samples with the fractional part of 
the accumulator address. This requires us to form two inter-
polated samples per desired output sample.  
 

6. REFERENCES 
 

fred harris, “A Fresh View of Digital Signal Processing for 
Software Defined Radios, Part I and Part II”, International Teleme-
try Conference (ITC), San Diego, CA, 21-24 October 2002. 

 
fred harris and Chris Dick, “Performing Simultaneous Arbi-

trary Spectral Translation and Sample Rate Change in Polyphase 
Interpolating and Decimating Filters in Transmitters and Receiv-
ers”, 2002-Software Defined Radio Technical Conference, San 
Diego, CA, 11-12 November 2002. 

 
fred harris and Michael Rice, “Multirate Digital Filters for 

Symbol Timing Synchronization in Software Defined Radios”, 
IEEE Journal on Selected Areas in Communications, Vol. 19, pp. 
2346-2357, Dec. 2001. 

 
Michael Rice and fred harris, “Polyphase Filter Banks for 

Symbol Synchronization in Sampled Data Receivers”, MILCOM-
2002, Anaheim, CA, 7-10 October 2002 

 
Ronald Crochiere and Lawrence Rabiner, “ Multirate Signal 

Processing”, Prentice-Hall Inc. Englewood Cliff, NJ, 1983. 
 
Norbert Fliege, “Multirate Digital Signal Processing: Multi-

rate Systems, Filter Banks, Wavelets”, John Wiley & Sons, Ltd, 
West Sussex, 1994. 

 
Gordana Jovanovic-Dolecek, “Multirate Systems: Design 

and Applications”, Idea Group, London, 2002. 
 
P. P. Vaidyanathan, “Multirate Systems and Filter Banks”, 

Prentice-Hall Inc. Englewood Cliff, NJ, 1993. 
 
Sanjit Mitra and James Kaiser, “Handbook for Digital Signal 

Processing”, John Wiley & Sons, NY, 1993 
. 
fred harris, “Multirate Signal Processing for Communication 

Systems: Current Practice and Next Generation Techniques”, 
Prentice Hall, 2004. 

 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved


