

A LIGHTWEIGHT SOFTWARE COMMUNICATIONS ARCHITECTURE (SCA)

LAUNCHER IMPLEMENTATION FOR EMBEDDED RADIOS

David Murotake (SCA Technica, Inc., Nashua, NH USA, dmurotak@scatechnica.com)
Alden Fuchs (SCA Technica, Inc., Nashua NH USA, aldenfuchs@comcast.net)

Antonio Martin (SCA Technica, Inc., Nashua NH USA, friendsglobal@hotmail.com)
Bruce Fette (General Dynamics Decision Systems, Scottsdale AZ USA,

Bruce.Fette@gd-decisionsystems.com)
Jeffrey Reed, Virginia Tech, Blacksburg VA USA, reedjh@vt.edu}
Max Robert, Virginia Tech, Blacksburg VA USA, probert@vt.edu)

ABSTRACT

The United States Department of Defense has specified a
CORBA based Software Communications Architecture
(SCA) as part of a procurement specification for the
family of Joint Tactical Radio System (JTRS) Cluster
radios. The JTRS Cluster radios require a high-assurance,
secure architecture employing NSA Type 1 security,
Common Criteria (CC) EAL 4+, and other stringent
security architecture requirements [2]. The JTRS Cluster
radio family includes embedded radios, such as Cluster 5,
in which a fully featured, CORBA based SCA may not be
economically or operationally feasible. In these situations,
a lightweight SCA should be employed. This paper
examines one approach – use of a remote waveform
launcher – to dramatically reduce SCA run-time memory
footprints required in the embedded radio component.
The majority of the SCA resides on the remote host,
typically a laptop computer of personal digital assistant
(PDA). The remote host is less processor- and memory-
constrained than the embedded radio(s), and more capable
of hosting the SCA core framework (CF), operating
environment (OE) and waveform resources. The launcher
was prototyped using the open source SCA Reference
Implementation (SCARI).

1. INTRODUCTION

Numerous approaches have been examined to reduce the
memory footprint requirements for the deployment of the
SCA Lite in embedded radios. These include:

1. Functionality reductions in the SCA, including

limitation to “static” vs. “dynamic” waveform
deployment and limitations of domain profile detail.

2. Classification of programmable resources as an SCA

device, allowing the use of downloads designed for
Figure 1. Application Launcher for SCA 2.2
red/black embedded radio.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

specific hardware (e.g. a field programmable gate
array) at the expense of waveform portability

.
3. Selection of the lightest possible POSIX operating

systems and minimum CORBA 2.2 object request
brokers (ORBs) for dynamic SCA 2.2 compliance.

4. Replacement of CORBA with customized

middleware.

5. Use of remote application launchers to deploy SCA

compliant applications, such as waveforms, to
embedded red/black radio subsystems, which
remained logically connected to a remote red host
(Figure 1).

While the first four methods are feasible, all require

changes (in some cases significant) to the SCA. The fifth
method preserves the full functionality and
interoperability of the SCA and its applications; requires
no changes to the SCA specification; requires minimal
code additions to the software deployed on the host; and
significantly reduces the run-time footprint of SCA
components deployed on the embedded radio. The
application launcher neither restricts operation to “static”
(pre-compiled) waveforms, nor does it affect portability
of waveforms and applications across different platforms.

An example of an embedded SCA radio set is the Land
Warrior Soldier Radio Subsystem (Figure 2).

2. SCA APPLICATION LAUNCHER

A Remote Launcher is a device / server that resides on a
remote client and is separate from the SCA Core
Framework. It provides mechanisms to allow an
application to be started on a processor or system that is
remote from the heavy core framework. This requires that
all needed files for the application and all libraries must
either exist on a Lightweight client or the Launcher must
provide a means of transferring and saving the files. The
remote launcher represents the only overhead to the
lightweight client that is beyond the need to run the
required applications. All SCA functionality resides at the
host and does not need to be replicated for each Core /
Red / Black processor. The only running processes on the
embedded radio cores will be the required waveforms and
a very compact Launcher. The ORB and all other SCA
2.2 systems will operate on the host.

No changes to the SCA itself are required to
implement remote launching of waveforms. Since the
means and location of storing waveforms and the means
of instantiating waveforms are platform dependent and
are not specified in the SCA 2.2, doing so by the
prescribed method remains fully SCA 2.2 compliant.

Black
Radio

INFOSEC

Red

Radio

System

Host
Data Data Data

Control Control Control

scaLite
Client

SCA 2.2
Server

scaLite
Client

Embedded Soldier Radio Module

HCI

D
a
t
a

C
o
n
t

Computer

Helmet Subsystem
Embedded Radio contains: Black radio,
COMSEC, Red Radio

Figure 2. Embedded SCA 2.2 radio example (Land Warrior Soldier Radio Subsystem).

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Remote launching of waveforms requires a launcher
server on a remote location from the SCA CF that:

• Allow for built/compiled waveform files or byte-code
to be saved/copied to the remote location.

• Allow for dynamic command line parameters to be

passed to the remote location and then used to
execute or launch the waveform or application.

A single call could support both functions. The
launching server utilizes the same middleware as the
waveform and SCA CF.

In the target SCA core framework, two points of
entry for code modification are identified:

• The point at which the application file(s), byte-
code(s), XML or etc. is installed (typically by the Domain
manager).

• The point at which the application or waveform is
instantiated (typically by the Application Factory
helpers).

The location of these “entry points” could reside at
the same location in the code base, depending on the SCA
implementation. For the first entry point, the SCA CF
identifies the location where the waveform file(s) must be
copied. For the second entry point, the SCA CF identifies
the location where the execution parameters must be

passed for launching the waveform / application.

To identify the target location, the XML parameters
in the waveform are examined. These parameters contain
the information necessary to support the middleware
being utilized and have been processed by the XML
parser. The proper variables or objects are accessed for
this information and depends on the core framework
implementation.

In the case of CORBA, the XML <simple> tag with

the id='EXECPARAM' in the xxx_PRF.xml file for the
waveform contains two tags:

• <kind> with a value of “CORBA ORB” to signify
this is the remote name reference when the ORB used is
CORBA

• <values> with a value of the remote launcher name
registered with the CORBA ORB name server. I.e., Red1,
Black1, Red2, etc.

Once the location and means of making a call to the
remote server at the target location are identified, the
SCA CF makes that remote call dependant on the current
point of entry action (Save files or start the application).

The data is then passed via the middleware to the
remote server (port). Depending on the point of entry
action, the remote server performs one of two actions:

Controller Processor
“Host”

Red Processor
1 - N

Black Processor
1- N

Full SCARI CF &
ORB & Name
server

 ORB libraries

ORB libraries

POSIX OS
Linux used in Demo

XP & Linux
used in Demo

XP & Linux used
in Demo

Launcher Client –
calls any published
service (i.e. multiple
RED, BLACK)

Launcher RED1
Server - publishes
Services

Launcher
BLACK1 Server -
publishes Services

Interconnect, Demo uses IP

Figure 3. SCA Launcher demonstration architecture.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

• When requested to save a file, the remote launcher
shall accept the data stream, save the file to the
location it deems appropriate.

• When requested to instantiate a waveform or
application, the launcher builds a command string
from the data provided and instantiates the waveform
by making the appropriate OS or POSIX call.

A remote launcher is a platform dependant component.
Thus the location where files or data should be saved, and
the means of instantiating or launching a waveform or
application, are specifically coded for the target platform
on which it executes.

3. LAUNCHER PROTOTYPE DESCRIPTION

A launcher prototype was developed using three personal
computers to simulate an embedded red and black SCA
radio system with a remote host (Figure 3). The prototype
system architecture employs multiple launcher servers,
one each for the Red1 and Black1 processor stacks. A
simple test application was employed (Figure 4). One
line of code in CRC’s SCARI was modified to use the
launcher client in the loading and starting of resources:

 $SCA_HOME\demosources\devices\
 ExecutableDeviceOperationsImpl.java

SCARI was also employed as the SCA CF on the
host processor.

4. TEST RESULTS

Preservation of SCA functionality and interoperability
with waveform applications developed for JTRS radio
sets’ employing “full” versions of the SCA without loss
of runtime radio performance was achieved as the test
waveform ran on both an un-altered SCARI single
processor baseline system, and the three processor
configuration of Host, RED1, and BLACK1.

Minimization of runtime memory footprint and
hardware required to implement the remotely launched
version of SCARI was achieved with minimum impact to
the SCARI code base. The launcher was demonstrated
using a platform independent approach running on a
combination of WindowsXP and Linux. Using the SCA
launcher with the SCARI implementation, the memory
footprint requirement for run-time operation of the Red1
and Black1 embedded radio subsystems results in a 40%
to 60% savings when compared to conventional methods
(Figure 5 and Table 1). The ORB libraries and Java
virtual machine (JVM) for Java 2 Standard Edition (J2SE)
on Pentium processors occupy about 6 Mbytes on Linux,
and 8 Mbytes on WindowsXP. Given the multiple JVM’s
invoked by the SCARI about 50 Mbyte of memory is
required on the Host. SCARI’s Java GUI programs add

Host Red Black

LOG

AldenTestApp

AldenTest
controller

Chorus LOG

IN

OUT

Echo LOG

IN

OUT

Radio Control
messages in Red

Audio Data
Packets in
bold black

Figure 4. Sample waveform used for prototype evaluation.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

another 15 Mbyte of RAM requirements. The total
memory required on the Host is about 65 Mbytes. By
contrast, only 12 Mbyte was required on the RED1 radio,
and 18 Mbytes required on the BLACK1 radio.

5. SUMMARY

Some JTRS SCA 2.2 compliant small form factor radios
require a means of reducing the run-time memory
requirement because of cost, power, and size constraints
of the embedded radio hardware. In the case of embedded
radios, which remain logically connected to an external
host CPU and GUI, a set of “launcher” applications may
be employed to allow remote initiation of SCA
waveforms and applications by SCA CF and middleware
located in the host CPU elsewhere in the system. In the
case of a red/black embedded SCA radio, a compact
launcher application (which includes a middleware port)
and waveform resources are stored in each red and black
embedded radio subsystem.

A single launcher application, located at the host
CPU, is added to the SCA CF, middleware, and operating
environment, distributing the SCA components and
resources across the radio system. This same approach
can also be used in other JTRS Clusters, and allows a
single SCA 2.2 “server” to control several radio sets
located throughout a platform, such as a ground vehicle,
aircraft, or ship. The same approach can also be used in a
data link system for unattended sensors, as long as logical
connection is maintained between the sensors and host.

 6. REFERENCES

[1] CRC task4_deliverable.doc October 30 2002
http://www.crc.ca/en/html/rmsc/home/sdr/projects/scari

[2] Draft Statement of work for small form factor radios,

Cluster 5, JTRS JPO http://jtrs.army.mil/

[3] Jeffery H. Reed, Software Radio, a modern approach to

Radio Engineering, Prentice Hall, New Jersey, 2002.

Table 1. Run-time memory requirements (MB) using SCA 2.2 Launcher and a simple demonstration waveform.

 ORB SCA Launcher Resources Total
RED1, Linux 128M Ram 0 0 6.97 8.83 15.80
BLACK1, XP-pro 512M Ram 0 0 9.05 12.77 21.82
HOST, Linux 1024M Ram 7.05 48.22 0 10.84 66.10
System total 103.73

O
R

B

S
C

A

La
un

ch
er

R
es

ou
rc

es

to
ta

l

0
10
20
30
40
50
60
70

Mbyte

Launcher Prototype System Memory Requirements

RED1, Linux 128M Ram
BLACK1, XP-pro 512M Ram
HOST, Linux 1024M Ram

Figure 5. Memory requirements using Launcher J2SE

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

