
 
A SOFTWARE FRAMEWORK FOR MODEL DRIVEN CONFIGURATION AND 

CONTROL OF WIRELESS BASEBAND SYSTEMS 
 

Rollo Burgess (Toshiba Research Europe Limited, Bristol, UK; 
 rollo.burgess@toshiba-trel.com) 

 
 

ABSTRACT 
 
In this paper we describe an application of the software-
defined radio concept to baseband signal-processing in 
current and future cellular and hotspot wireless systems, 
such as WCDMA and WLAN. We begin by highlighting 
the challenges that confront us in implementing a truly 
flexible baseband system. These challenges stem from the 
real-time and compute-intensive nature of the signal-
processing, the limitations and diversity of processors and 
of course the need to minimise power consumption. Taking 
a strictly software-centric viewpoint we show how these 
challenges can be met using software engineering 
principles, state-of-the-art software technologies and several 
novel concepts. We combine these into a proposed 
baseband software framework. The framework defines a 
runtime environment, which configures and controls low-
level signal-processing through the action of hardware and 
algorithm models and reusable software components. 
Finally we point out the unresolved issues and areas for 
future work. 
 

1. INTRODUCTION 
 
Today’s mobile baseband systems are not known for their 
runtime flexibility. A truly Software Defined Radio (SDR) 
[1] requires a level of baseband flexibility more readily 
associated with desktop computing. Unlike a PC 
application, however, automated baseband configuration 
must guarantee applications are both predictable and 
reliable. In other words spurious radio emissions and 
sudden crashes are not acceptable behaviour. These 
guarantees must be made in the face of technical challenges 
derived from the unique nature of wireless baseband signal-
processing, and the computing environment where it is 
undertaken. In particular the required functions are 
constrained by time and demand enormous processing 
power. In addition, implementations must be sparing in their 
use of the limited power reserves available to mobile 
terminals [2] [3]. 
 Further we undertake these challenges for the most 
generic processing environment, one without a standard 
hardware (HW) platform. Rather we propose a more 

flexible solution using a standard software (SW) 
infrastructure. 
 In the following section we describe our assumptions 
regarding the HW and SW environment in more detail. In 
section 3 we describe the resulting challenges, and in 
section 4 we show how these challenges can be met using 
modern software engineering techniques. Finally in section 
5 we review our proposals and highlight those areas 
requiring future work. 
 

2. ASSUMPTIONS 
 
Figure 1 portrays our assumptions concerning the terminal 
signal-processing HW, using elements of the Unified 
Modelling Language (UML) deployment diagram [4]. 
 

 
Figure 1: assumed hardware architecture 

 
Essentially a network of program, control and data links 
physically connect processors to each other and also to one 
or more global memory devices. We assume a control 
domain exists, containing at least one General-Purpose 
microProcessor (GPP), as shown at top left in Figure 1. The 
data-path signal-processing domain is assumed to consist 
of any number and combination of the three fundamental 
types of accelerating processors, Digital Signal Processors 
(DSPs), Configurable Computers (CCs) [5] and Application 
Specific Integrated Circuits (ASICs). DSPs are considered 

: ASIC: configurable
computer: DSP

: general
purpose

µProcessor
: link global :

memory0..*

local : memory

local : memory

local : memorylocal : memory

0..*

0..* 0..* 0..*

1..* 1..* 1..*

1..*1..*

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



microprocessors for accelerating signal-processing, while 
CCs and ASICs are HW accelerators. Finally we assume 
each processor owns a tightly-coupled local memory device. 
The link between the local memory and its processor is 
considered private; it is not shared with other processors 
and can be expected to have a low latency. 
 Figure 2 shows our assumptions regarding the wider 
software environment of the terminal, in terms of 
dependencies between packages representing SW layers.  
 

 
Figure 2: assumed software environment 

 
The reconfigurable baseband layer is shown shaded at 
centre. It is logically part of a data processing chain, 
running from top-to-bottom that includes reconfigurable 
protocol stack, and Radio Frequency (RF) layers. To the left 
a high-level Configuration Management (CM) layer has 
responsibility for directing the reconfiguration procedures. 
To the right is the lowest layer, the execution environment. 
This layer is critical since it provides independence from 
low-level HW issues. Two Application Programmer 
Interfaces (APIs) are shown. The Operating System (OS) 
API acts as a virtual operating system, by providing a 
standard interface to OS services. Likewise the HW 
abstraction API provides a standard approach to accessing 
radio specific HW. Finally the terminal middleware package 
wraps several execution environment functions to provide 
standard mechanisms for inter-process communication. 

3. CHALLENGES 
 
The first challenge is the diversity of target terminal 
hardware architectures, with each manufacturer having a 
preferred, possibly proprietary, architecture. This issue is 
compounded as each architecture will contain a 
heterogeneous set of processors with a wide range of 
programmability [3]. Microprocessors such as DSPs and 
GPPs will continue to dominate as they are well-understood 
and very flexible. At the other end of the spectrum ASICs 
provide severely limited or zero flexibility, however we 
expect they will continue to be necessary for low power and 
to meet the high computational requirements of future radio 
access technologies [3]. In-between are the new breed of 
CCs which are expected to play an increasing role due to 
their inherent flexibility and relatively low-power 
performance [5]. 
 In fact the limited power available to battery powered 
terminals continues to be a major constraint [6]. Therefore 
minimising power usage is an important challenge facing 
reconfiguration. A further challenge also concerns 
constraints, namely the need to guarantee the hard real-time 
deadlines inherent to baseband signal-processing. 
 Two challenges remain. Installation of new or partial 
baseband applications must have no observable effect on the 
radio behaviour of existing baseband applications. Lastly, 
dynamic configuration forces us to automate what is 
essentially a complex hardware / software co-design 
process, normally handled by a team of experienced 
engineers [3]. 
 

4. SOLUTIONS 
 
To meet the challenges outlined in section 3 we describe a 
number of solutions that rely on software abstraction.  
 
4.1 Software Abstraction 
 
The challenges described in section 3 require the efficient 
management of complexity. Fortunately software 
engineering is particularly good at tackling complex 
problems using abstraction. Abstraction identifies the 
relevant aspects of an entity while ignoring or hiding the 
rest [7]. In object-orientation (OO) classes capture the 
essential characteristics of a set of objects by encapsulating 
both their behaviour (methods) and state (attributes). 
Abstraction is not limited to OO and is widely used in 
software engineering to simplify a system by hiding the 
detail of a service behind an interface. Table 1 lists some 
common software abstractions. 

terminal
middlware

execution
environment

RF

baseband

protocol stack

configuration
management

OS
API

HW
abstraction

API

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



 
Table 1: well-known software abstractions 

 
Abstraction Encapsulates Interface 
method sequence of actions operation 
process concurrent and iterative 

sequence of actions 
synchronised 
operations 

object data and methods operations 
component data and methods reflected operations 
active object object and process synchronised  
active 
component 

component and process synchronised 
operations / 
middleware 

package groups of related objects 
/ components 

operations  

middleware communication 
mechanism 

communication 
operations 

design pattern software mechanism operations 
model essential features of a 

device or algorithm 
operations 

software layer components / objects operations (API) 
framework all other abstractions operations 
  
 The history of software engineering shows a trend 
toward using higher-levels of abstraction [8]. We aim to 
follow this trend by raising the level of abstraction used in 
wireless baseband systems. The following abstractions are 
singled-out as being crucial to our approach: 
 

• Process. An abstract representation of behaviour in 
a concurrent system. A Process is commonly defined as 
an iterative sequence of actions. Typical software 
implementations are known as tasks or threads. 
Message-based communication between concurrent 
processes is often made via a channel abstraction [9]. 
• Software Component. Any software artefact that is 
deployed at runtime [4]. We recognise three types; 
dynamic executable components (d-ex-components), 
HW configuration components (hw-c-components) and 
SW configuration components (sw-c-components). D-
ex-components enable runtime flexibility and off-the-
shelf software reuse. They provide a set of services 
whose interfaces can be exactly determined at runtime, 
a capability known as reflection [10]. Knowing the 
interfaces allows d-ex-components to be dynamically 
connected together at runtime to compose an 
application. Hw-c-components are non-executable 
components that specify how a HW accelerator should 
be configured for a specific function. Examples include 
arranging part of a CC to act as a rake receiver or 
parameters for initialising a turbo-decoder ASIC to the 
UMTS standard. Sw-c-components are non-executable 
meta-software components. These specify the runtime 
arrangement of other groups of SW components. 
• A model is an abstraction that captures the 
essential features of a domain-specific device or 

method. To our knowledge no one has explicitly used 
modelling in a dynamic, embedded runtime 
environment, though this is certainly possible given 
adequate resources. Models are more commonly used 
during design and development for simulation and 
problem solving, for example [3]. Executable systems 
must be constructed under a Model of Computation 
(MoC) that is a set of “laws of physics” that govern the 
interaction of components within the system. These are 
particularly important for concurrent systems, such as 
those described by processes and channels [10]. 
• A software framework is a re-useable infrastructure 
that provides common structure and behaviour for a 
particular application domain [11]. They can be thought 
of as partially completed applications, pieces of which 
are customised by a developer to complete an actual 
application. Frameworks are commonly composed from 
design-patterns, another abstraction which is 
essentially a software mechanism for solving common 
[12] and domain-specific [11] implementation 
problems.  

  
 We have already seen abstraction at work using layers 
in our assumptions about the software environment. For 
example the terminal middleware abstracts inter-process 
communication. We will now focus on how the abstractions 
discussed above can be applied to the challenges facing 
flexible baseband signal-processing.  
 Figure 3 shows an example application for part of an 
extremely simplified UMTS-style receiver. We will use this 
example to illustrate the solutions in the following 
discussion. 
 
4.2 Processes 
 
We begin by tackling the issue of diverse heterogeneous 
HW architectures. Our approach is to decompose all 
required functionality into processes that communicate via 
channels. Assuming independence from inter-process 
communication issues, using an appropriate middleware to 
fulfil the channel communication, we are free to develop a 
multitude of different implementations for each process. In 
this way we can target processes to the most appropriate 
processors. In the example, configuration and control 
processes are assigned to the GPP while the signal-
processes are assigned to the accelerators, i.e. the DSP and 
CC. Signal-processes can also benefit from multiform 
implementation for different types of accelerators. Such 
processes have maximum opportunity for reuse; they can be 
deployed in many ways within a single terminal and indeed 
to multiple manufacturers’ terminals. 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



 
 

 
Figure 3: example simplified application 

 
4.3 Components 
 
How do we implement the polymorphic processes of the 
previous section? Our answer is to encapsulate them in d-
ex-components. This approach also helps meet the 
challenge of automating the reconfiguration. The traditional 
approach to creating an application is an engineering one; a 
programmer develops objects, and these are grouped at 
design-time to form an application. In contrast d-ex-
components are suited to manufacturing; the application is 
automatically assembled from component parts which are 
dynamically bound at runtime. Together decomposition of 
functionality into communicating processes and 
implementation of these using d-ex-components gives great 
flexibility. A baseband application can be freely assembled 
from any available components that meet the terminal’s 
needs. The minimum criterion for choosing a component is 
compatibility with one of the terminal’s processors. Figure 
3 shows several d-ex-components using an open-jigsaw 
symbol with solid border; for example the DSP manager 
and the filter task. 
 Of course more sophisticated criteria will be needed to 
truly optimise the implementation. In particular the 
challenges of meeting real-time constraints and minimising 
power can only be met dynamically if sufficient 

performance metrics are available. One way to do this is by 
building processor-specific performance figures, such as 
worst-case execution time and average power consumption, 
into the components. However signal-processing 
components should be just that, components optimised for 
processing signals. For example a signal-processing d-ex-
component which is hand-crafted in assembler for a DSP, 
such as filter task, should not be burdened with control-
domain functionality. We therefore propose separating this 
behaviour by creating a control-domain representation of 
the implemented signal-process, called a signal-process 
proxy component. The signal-process proxy represents 
everything about the signal-process except the core 
“number-crunching”. Figure 3 shows two of these; filter 
proxy and rake proxy. Proxies are therefore interrogated 
for performance metrics and memory requirements, they are 
used to initialise their processes with parameters, and to 
start and stop the signal-processing, and so on. Each proxy 
is tightly coupled to an implementation of the signal-process 
using an accelerator; however it runs in the control domain. 
For example Filter proxy identifies filter task as its 
implementation. Rake proxy similarly identifies rake 
configuration. The latter is a hw-c-component for the CC, 
and is shown as a shaded jigsaw piece. Once again we see 
abstraction at work. Diverse and heterogeneous accelerators 
can be configured and controlled just by manipulating 
proxy components. In this way the CM is relieved of any 
direct knowledge of the underlying accelerator HW. As far 
as it is concerned configuration is only a matter of 
managing software components, which is what we would 
expect for a SDR solution. 
 
4.4 Modelling 
 
But how can the CM choose the set of proxies that map 
function to architecture in an optimal manner? This is 
perhaps the most difficult challenge. To achieve this we 
propose moving to a higher level of abstraction, one where 
we model the interaction between the static terminal 
architecture and the dynamic baseband algorithms. We 
define an architecture model as a representation of the 
accelerating processors and their physical communication 
links, using entities called HW managers. In Figure 3 the 
architecture model is shown in the lower portion of the 
GPP; it contains 3 managers, one for each accelerator and 
one for the data link between them. We also define purely 
functional algorithm models that are used to explore the 
implementation of baseband applications. Each baseband 
application is represented by a single algorithm model. In 
Figure 3 part of a UMTS algorithm model is shown above 
the architecture model. 
 Reconfiguration, involving a new application, begins 
with the construction of a new algorithm model according 
to a machine-readable specification, called an algorithm 

control processor
: general purpose
µProcessor

: configurable
computer: DSP

control link

data
link

filter
task

rake
config.

library

algorithm model

architecture model

configuration and control

accelerated
 signal-processing

algorithm
map

DSP
manager

link
manager

CC
manager

channel
proxy

filter
proxy

config.
manager

F R

rake
proxy

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



map. The map is a sw-c-component which specifies 
prototypical versions of both the processes and 
communication channels of the algorithm. The algorithm 
model is actually constructed from proxy components that 
realise these prototypes. For example in Figure 3 an 
algorithm map (open jigsaw piece with intermittent border) 
is retrieved from the library. The CM parses it and 
determines that the model requires a signal-process that 
conforms to the filter prototype, shown as F. The CM 
selects and uses the filter proxy, to realise this prototype. 
 The selection of a proxy is polymorphic since different 
proxies can be chosen to vary the implementation. The only 
constraint on selecting an implementation is that it targets 
one of the terminal’s processors. The mechanism to 
guarantee this requires that the chosen proxy must 
successfully couple with one of the HW managers in the 
architecture model. For example filter proxy couples to 
DSP manager. Thus each proxy process is considered to 
‘run’ on a processor manager. Similarly each channel proxy 
can be considered to ‘run’ on one or more link managers, 
where the process implementations imply inter-processor 
communication is necessary. This is essential to correctly 
model the latencies inherent in passing data across a link. 
 The joint model is a virtual implementation of the 
baseband and it is this that is analysed during optimisation. 
Remember that proxy components carry performance 
measurements for the accelerator component they represent. 
The CM pairs this information with details of real-time 
constraints conveyed by the algorithm map, and 
subsequently stored in the map’s runtime representation, the 
algorithm model. Thus sufficient information is available to 
the CM to evaluate the real-time capability of the 
implementation specified by the current model. Other 
evaluations, such as those for power consumption and 
memory budget can be similarly made, although it is likely 
that any constraints on these would be specific to the 
terminal and its current configuration. 
 Optimising a single permutation of the model, i.e. 
unique selection of proxy components, is in itself a 
challenge. In fact the implied mapping of processes to 
shared HW resources requires solution of the well-known 
multiprocessor scheduling problem, known to be NP-
complete [13]. We will not discuss this problem here. 
Instead we note that practical methods for obtaining near 
optimal solutions exist given a suitable MoC. The MoC that 
we have adopted for signal-processing algorithms is 
Synchronous Data-Flow (SDF). This sub-class of the well-
known data-flow model, where process computation is 
triggered by the arrival of input data using asynchronous 
buffers, was first explored by Lee and Messerschmitt [13]. 
A correctly designed SDF model can use multiple sample 
rates, is determinate, has bounded memory requirements 
and static periodic schedules can be constructed for both 
uni-processor and multi-processor environments. If the 

algorithm map, and hence algorithm model are constrained 
to SDF, the CM can use the model to predetermine both 
memory usage and a process schedule. This is an efficient 
approach requiring minimal intervention during execution 
of the signal-processing. 
 Using SDF also has a beneficial side-effect; the 
combined function and architecture model can be executed 
in the control domain, providing a ready-made mechanism 
for controlling the execution of accelerated signal-
processes. Accordingly proxies become active when they 
receive all the tokens representing memory references for 
input data, and a single control token from their HW 
manager. Managers issue their control tokens according to 
the predefined schedule. The signal-processing proxies can 
then initialise, start, monitor and stop their accelerated 
processes, finally returning the control token to their 
manager. Channel proxies can likewise dynamically manage 
both the memory, i.e. the memory references stored in the 
tokens, and physical mechanisms associated with 
communication between the processes. Data-flow is an ideal 
model for the signal-processing. Aspects of the control 
domain execution requiring data-dependent choice are 
suited to a more general synchronous MoC, such as 
Communicating Sequential Processes [14]. An example 
would be intervention during an error handling scenario. 
 So-far we have only considered the optimisation of a 
single model. In general multiple models will require 
simultaneous optimisation; for example multiple 
permutations of proxies for a new application, or re-
optimisation of an existing application in tandem with a new 
one. The CM can include these by making each model an 
extra dimension in the scheduling problem space. Thus for 
maximum speed and efficiency proxy components must 
initially be lightweight; their accelerated part only need be 
invoked after the parent model has been selected for service. 
 
4.5 Framework 
 
Finally, to ensure that the above solutions are used in a 
consistent manner, we propose capturing them in a 
standardised software framework. The framework provides 
a template for the SW infrastructure, including the all-
important interfaces of the many abstractions. The 
framework will also include design patterns for domain-
specific software mechanisms, for example those that define 
elements of the SDF model of computation. 
 We anticipate that the framework will be described in 
an implementation-independent manner using UML. 
Useable versions of the framework can be implemented, 
(also in UML,) by realising the interface specifications 
using libraries imported from specific OO languages such as 
C++ or Java.  

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



 
5. CONCLUSION 

 
We have discussed a software-centric solution to the 
challenges facing the implementation of dynamically 
reconfigurable wireless baseband systems, assuming the 
most generic scenario, one where it is the software that is 
standardised and the underlying hardware is free to vary 
from terminal to terminal. We have proposed a standard 
software framework that meets the challenges of terminal 
diversity, heterogeneous processing resources, power 
minimisation, hard real-time constraints and automated 
application installation. The framework manages the 
complexity through the use of software abstraction. In 
particular the abstractions process, software component and 
model are crucial. Processes are used to define abstract 
baseband algorithms. Software components are used to 
implement these in a flexible manner such that they scale to 
multiple processor types. Finally modelling is used to 
analyse and optimise potential component combinations, 
according to known constraints, and ultimately to manage 
the execution of the resulting signal-processing. 
 Much future work is required to validate the ideas 
outlined in this paper and there are many unresolved issues. 
In the short term we intend to develop the concept focusing 
on methods and technologies for implementing the 
framework. In the longer term we aim to answer the wider 
question of whether an implementation of the concept is 
sufficiently practical and efficient to make software-centric 
reconfiguration and control of baseband signal-processing 
in a diverse, heterogeneous environment a reality. 
 The following are some of the important 
implementation issues that will require in-depth 
investigation: 
 

• Realistic methods for scheduling the SDF signal-
processes in a heterogeneous multi-processor 
environment. 
• A lightweight runtime environment for d-ex-
components suited to embedded systems. Current 
environments, such as the Corba Component Model, 
are considered too heavyweight [15]. 
• Classification and registration of hardware devices, 
resulting in components for the architecture model. 
• Classification and identification of, and 
mechanisms for retrieval of, the many types of software 
components. 
• Procedures and methods for embedding 
performance metrics into proxy components. 
• Implementation of the algorithm map. 
• Detailed study of the CM elements required to 
manage and control the reconfiguration procedure. 

 

6. ACKNOWLEDGEMENTS 
 
This work has been performed in the framework of the IST 
project IST-2001-34091 SCOUT, which is partly funded by 
the European Union. The authors would like to 
acknowledge the contributions of their colleagues from 
Siemens AG, France Télécom – R&D, Centre Suisse 
d’Electronique et de Microtechnique S.A., King‘s College 
London, Motorola SA, Panasonic European Laboratories 
GmbH, Regulierungsbehörde für Telekommunikation und 
Post, Telefonica Investigacion Y Desarrollo S.A. 
Unipersonal, Toshiba Research Europe Ltd., TTI Norte 
S.L., University of Bristol, University of Southampton, 
University of Portsmouth, Siemens ICN S.p.A., 3G.com 
Technologies Ltd., Motorola Ltd. 
 

7. REFERENCES 
 
[1] J. Mitola III, Software Radio Architecture, John Wiley & 

Sons Inc., New York, 2000. 
[2] Z. Salcic, C.F. Mecklenbrauker, “Software Radio - 

Architectural Requirements, Research and Development 
Challenges,” 8th International Conference on Communication 
Systems, Vol.2, pp 711 -716, 2002. 

[3] H. Blume, H. Hübert, H. T. Feldkämper & T. G. Noll, 
“Model-based Exploration of the Design Space for 
Heterogeneous Systems on Chip,” Proceedings of the 
Workshop on Heterogeneous Reconfigurable Systems on 
Chip, Hamburg, 2002 

[4] G. Booch, J. Rumbaugh & I. Jacobson, The Unified Modeling 
Language User Guide, Addison-Wesley, 1999. 

[5] R. Hartenstein, “A Decade of Reconfigurable Computing: a 
Visionary Retrospective,” International Conference on 
Design Automation and Testing in Europe, Munich, Mar. 
2001. 

[6] T. Makimoto, K. Eguchi, M. Yoneyama, “The cooler the 
better: new directions in the nomadic age,” IEEE Computer 
Vol. 34, No. 4, Apr. 2001, pp 38-42. 

[7] B.P. Douglass, Real-Time UML, Second Edition, Developing 
Efficient Objects for Embedded Systems, Addison-Wesley, 
2000 

[8] D. Cook, “Evolution of Programming Languages and Why a 
Language is Not Enough to Solve Our Problems,” Crosstalk, 
the Journal of Defense Software Engineering, Dec. 1999. 

[9] A. Burns & A. Wellings, Real-Time Systems and 
Programming Languages, Addison-Wesley, 2001. 

[10] E. A. Lee, “Embedded Software,” Advances in Computers, 
Vol. 56, Academic Press, Sept. 2002. 

[11] A. Pasetti, “Software Frameworks and Embedded Control 
Systems,” Lecture Notes in Computer Science, Vol. 2231, 
2001. 

[12] E. Gamma, R. Helm, R. Johnson & J. Vlissides, Design 
Patterns, Elements of Reusable Object-Oriented Software, 
Addison-Wesley, 1995. 

[13] E.A. Lee & D.G. Messerschmitt, “Synchronous Data Flow,” 
Proceedings of the IEEE, Vol. 75, No. 9, Sept. 1987. 

[14] S. Schneider, Concurrent and Real-time Systems, the CSP 
Approach, John Wiley & Sons Ltd, Chichester, UK, 2000. 

[15] Object Management Group, “Lightweight CCM, Request for 
Proposal,” OMG Document: realtime/2002-11-27. 

 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved


