GENERAL DYNAMICS

Decision Systems

Synthesizing FPGA Cores for Software-Defined Radio

Rob Pelt DSP Specialist Altera rpelt@altera.com

John Huie

Digital Lead Eng General Dynamics Decision Systems

John.huie@gdds.com

Brian Jentz

DSP Product Manager Altera bjentz@altera.com

Price D'Antonio

Technical Lead JTRS General Dynamics Decision Systems

Price.D'Antonio@gdds.com

November 6, 2003

1

© 2003 General Dynamics, Altera All rights reserved.

Agenda

- Background of Software-Defined Radio (SDR)
- Move to Digital Radio Architectures
- Digital Intermediate Frequency (IF) Processing
- Implementing Spread Spectrum Waveform (SSW) on FPGA
- Example of System Implementation
- Conclusions

Background of SDR

Why SDR?

- Any Waveform, Any Time
- Many Waveforms
- Small Form Factors (Size, Weight, Power)
- Unified Architecture

Why FPGAs for SDR?

Building Blocks for SDR

- Microprocessors
- DSP Capability
- Multiple Clock Domains

- Multiple (& Configurable) External Interfaces
- FPGAs Have All of These
 - Soft Microprocessor Cores
 - DSP Functionality (Multipliers, Etc.)
 - Phase-Locked Loops (PLLs)
 - Configurable I/O Pins

Altera Hardware-Features for SDR

FM Radio Example

First FM Radio

- All Analog Implementation

Moving to Digital Radio Architectures

- Digital Radio Has Benefits over Analog
 - Better Manufacturability
 - Lower Cost
 - No Need to Tune
 - Consistent Behavior over Power/Voltage/Temperature

Processor-Based Demodulation

- Analog Functions Are Simply Mathematical Equations
 - $\Theta = \arctan(Q/I)$
- These Functions Can Be Performed by Microprocessors
 - For Low Bit-Rate Signals

Improving Demodulation Speed

- Soft Core Processors
 - 100 200 MIPS Performance
 - Custom Instructions
- Offloading the Processor
 - Co-Processors for Specific Functions
 - CORDIC, FFT, Encryption, etc.

Function	Speed
Soft Core (Altera NIOS)	100 MHz
CORDIC	219 MHz

Digital IF Processing

- Current Generation FPGA Can Perform Digital IF Processing
 - Data Rates up to 300 MHz
 - Bandwidths up to 150 MHz
- Digital Implementations of Standard Analog Functions
 - Numerically Controlled Oscillator (NCO)
 - FIR Filters
 - CIC Filters

Cores for Digital IF Processing

Function	Speed	Logic Elements	Multipliers	Memory (M4K)
Parallel FIR (48 Taps, 14-Bit)	244.26 MSPS*	1,375	0	30
Serial FIR (48 Taps, 14-Bit)	19.33 MSPS*	360	0	6
NCO (24-Bit)	278.78 MHz	67	8	12
CIC (6th Order, 14- Bit)	200 MHz	1,138	0	0

* Million Samples per Second

November 6, 2003 11

© 2003 General Dynamics, Altera All rights reserved.

Implementing SRW on FPGA

- Soft Processor Core for Control
- Co-Processing Engines
 - FEC
 - RAKE

Cores for SRW Implementation

Function	Speed	Logic Elements	Multipliers	Memory (M4K)
FFT* (128 Points)	1.03 µsec	4,838	9	19
FFT* (2,048 Point)	8.38 µsec	7,952	18	44
FFT* (8,192 Point)	38.73 µsec	8,388	18	176
Viterbi Decoder**	10 Mbps	2,600	0	0

^{*} Two Radix 4 Engines, 16-Bit Operation

** Constraint Length = 7, Number ACS = 8

Example of System Implementation

- Small Form Factor Prototype
- 5 Square Inches
- 14 Layers
- HMI Using HP IPAQ Model 5550

SDR Ideal Implementation

© 2003 General Dynamics, Altera All rights reserved.

Conclusion

- FPGAs Are Excellent for SDR
- Combination of Resources Provide SDR Platform
 - Soft Processor Cores
 - Baseband Co-Processors
 - Digital IF Co-Processors
- Small Form Factors Can Be Achieved
 - Meeting Power/Size Requirements for Handheld Radio

GENERAL DYNAMICS Decision Systems