

USING FPGA CO-PROCESSORS IN SOFTWARE DEFINED RADIO SYSTEM

ARCHITECTURES

Paul Ekas (Altera Corporation, San Jose, Calif., U.S.A., pekas@altera.com)

ABSTRACT

SDR systems require flexibility, long-lifecycles, and low-
costs and power. An optimal implementation architecture
leverages the advantages of processors and field
programmable gate arrays (FPGAs) which provides a fully
programmable architecture capable of delivering the high
signal processing performance demands of SDR. In these
heterogeneous architectures, the control processing is
implemented on the processor and the dataflow processing
is implemented on the FPGA fabric. In many cases, this can
be considered a co-processing architecture as defined by the
3 permutations of co-processors: pre-processing, post-
processing, and co-processing. Altera supports these three
architectures with development tools enabling co-processing
design and integration.

1. INTRODUCTION

When designing a cellular baseband SDR system, long-term
system flexibility is always a particular concern. SDR
systems must be able to operate under present conditions,
but also be easily enhanced to meet changing future
requirements. As a result, in SDR design implementing an
architecture that can meet reconfigurability requirements, as
well as cost, power and performance demands is always a
key challenge. These reconfigurabilty requirements can be
implemented in hardware using processor-based
components, FPGA components, or a combination of the
two. The author believes that, in general, optimal SDR
system architectures are best implemented using a
combination of these two types of semiconductor
technologies.

2. SDR CONCEPTUAL ARCHITECTURE –
DYNAMIC FUNCTIONS

As has been discussed elsewhere, [1] three different
techniques can be used to implement system
reconfigurabilty: using parameterized radio and protocol
modules, exchanging a single component within a module,
or exchanging complete radio modules or protocol levels.
 In the case of parameterized radio modules, the module
design must take into account all the permutations necessary
to implement the system. This approach is feasible and even

required for a narrow range of operations, such as within
global system for mobile communications (GSM)- or
universal mobile telecommunication system (UMTS)-based
standards. Typically, wireless communications standards are
defined with a variety of operational modes that must be
dynamically supported in real-time to take advantage of
operating conditions, such as data throughput demands or to
compensate for physical system impairments, such as
multipath and user loading. Parameterized modules,
however, are not a practical approach for supporting
reconfiguration requirements across complex standards. In
the case of GSM and UMTS implementations, for example,
the physical layer communications are so complex and
radically different technologically that in commercial
implementations they are almost invariably designed
separately in hardware and software and then merged at a
higher level of software and hardware integration. Because
of this inability to support reconfiguration across complex
standards, parameterized modules do not offer an optimal
approach for supporting future, and as yet undefined, radio
standards.
 The second technique—exchanging a single
component—is useful where particular algorithms do not
overlap in implementation, but serve similar functions. This
can be seen, for example in forward error correction with
Viterbi and Turbo decoding, where either algorithm can be
chosen within the same standard, but where the physical
implementation is significantly different. Texas Instruments,
for example, has embedded two hardware co-processors on
its TIC6416 device that implement these two algorithms as
separate parameterized functions to support a variety of
requirements across different wireless systems. Even these
parameterized co-processors, however, are only capable of
limited variations in reconfigurability and may not support
new features that emerge as wireless standards evolve as has
occurred, for example, in the 3GPP WCDMA standard with
high-speed downlink packet access (HSDPA).
 The third approach, exchanging complete radio
modules or protocol layers, works well if the majority of the
system’s operations are significantly different. In GSM and
UMTS where some components are effectively identical or
simply permutations of the other, the physical layer is
entirely different. In another example, GSM to cdma2000
requires a complete replacement of both the physical and
network layer implementations because not only are the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

physical layers entirely different, the upper layer protocols,
GSM-MAP and ANSI-41 are also too different to use the
same software implementation across both.
 A combination of these approaches is required to
implement existing and future radio standards. Based on the
requirements for SDR to support both narrowband and
wideband systems an architecture composed of a
combination of processors and FPGAs can handle these
three reconfigurable approaches across all required
processing loads quite effectively. The processor can be
used to switch dynamically between major sections of
software when switching between standards. At the same
time, the FPGA can be completely reconfigured, as
necessary, to implement the architecture that has been
customized for the particular standard currently in use. This
particular approach meets the design demands for SDR by
enabling the implementation of radio configurations that can
be independently developed, tested and loaded onto radios.

3. IMPLEMENTING THE ARCHITECTURE

Having decided to use a combination of processors and co-
processors, the next step in implementing a reconfigurable
architecture is to identify the different types of operations
required by the system and the type of processing best
suited to each of the operations. These operations can be
divided into two groups: first, system control and
configuration and second, signal processing data path and
control.
 System control and configuration are related functions
focused on maintaining and controlling the state of the
system. System control is the dynamic operation within a
wireless standard, while dynamic configuration changes the
system from one wireless standard to another. These two
control-intensive tasks require complex software
implementations with a light computational load. In SDR
they are generally written on top of CORBA [2] and the
SCA [2]. In general, these system control and configuration
functions are performed by control processors running large
C-based or similar programs requiring both high levels of

memory efficiency and maintenance by high-level C
language tools. These system functions will likely reside on
control processors.
 Typically, the bulk of the processing load is taken up
by the signal processing data path and control tasks. The
physical layer communications in TDMA-, code-division
multiple access (CDMA)- and OFDM-based systems along
with encryption and some of the networking functions are
all excellent examples. The concentrated computational load
in signal processing makes it amenable to parallel and
cascaded data path elements. In cases where data path
elements are used, the related active real-time control
function may also require that dedicated control logic be
integrated with the data path processing. In those cases,
such as TDMA and FM systems, where the signal
processing does not consume significant processing
capabilities, the signal processing and related control
functions can be software implemented.
 Depending on the wireless communications standard
being supported, processing demands can vary significantly.
Those with light processing demands may be best
implemented as software-only systems, while those with
higher processing demands are best implemented as
software-plus-hardware based systems. The latter will be
implemented in a combination of digital signal processors
and FPGA-based dedicated logic architectures.

Figure 1. Data sourced from and synched to a processor. Figure 2. Data sourced from a high-speed interface through
the co-processor to the processor.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

4. USING CO-PROCESSORS TO OPTIMIZE

PERFORMANCE
In many SDR systems a small percentage of the program
code consumes the majority of the MIPS in time-
consuming, error-prone and difficult-to-maintain recursive
algorithms that are used to increase overall system
performance. The majority of the code, which consumes
only a small percentage of the MIPS, still reflects the
majority of the system complexity.
 FPGAS co-processors can be an efficient means to
reduce the process load and minimize latency in the system.
Benefiting from this approach, however, requires knowing
how to determine whether any individual system design will
benefit from a co-processor implementation. A poor choice,
rather than improving system performance, adds
unnecessary system complexity.
 There are three very common system configurations
where a co-processing implementation is very likely to
enhance overall system performance. The first is a system
where data is sourced from and then synched to a processor
(figure 1). The second and third respectively are systems
where data is either sourced from a high-speed interface
through the co-processor to the processor (figure 2), or this
path is reversed (figure 3). In all three of these
configurations, the processor controls both the co-
processor’s functionality and operating parameters.

 Examples of this first type of configuration include
forward correction or channel equalization in narrowband
systems for wireless applications. Examples of the second
and third types include filtering, digital down-conversion or
pre-distortion in wireless systems.

5. AUTOMATING CO-PROCESSOR INTEGRATION

.
Traditionally, co-processor integration has been a very
manual task, but today there are some tools on the market
that can be used to automate the integration process. One of
the most robust is Altera’s system-on-a-programmable-chip
(SOPC) Builder (figure 4).
 SOPC Builder has an established history of several
years use integrating complex peripherals into single- and
multi-processor-based FPGAs. Applying SOPC Builder to
support co-processor integration actually simply involved
an evolution of how the tool was applied to address
performance issues in customer systems. It did not require
any technical changes. The tool supports a broad range of
processors, peripherals and now co-processors. Using
SOPC Builder’s interactive menus, designers are able to set
the parameters of the components they intend to use and
then can choose the optimal Avalon switch architecture to
connect the selected components. The tool will then
automatically assemble the system in register transfer level
(RTL) very high density language (VHDL) or Verilog, after
which it generates a software driver file called Excalibur.h.
Excalibur.h contains all the software interfaces for the
blocks used in the system. It also includes software
directions for the register and a memory map defined by the
user’s architectural selection. This correct-by-construction

Figure 3. Data sourced from the co-processor to the processor. Figure 4. Altera’s SOPC Builder.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

approach accelerates system integration by months by
eliminating the error prone and tedious manual development
of low-level software drivers. In addition, once such blocks
have been integrated into SOPC Builder they are easily
reusable in subsequent designs.
 While SOPC Builder enables the integration of
complex processor-, peripheral- and co-processor-based
systems, the co-processors used will likely be unique,
tailored to the specific application and requiring custom
development for each individual system. There are a
number of options to choose from when building a co-
processor. The specifications and C code, for example, can
be translated into a VHDL or Verilog hardware architecture
and subsequently be recaptured in a system block diagram
using Altera’s MathWorks Simulink interface—DSP
Builder. On the other hand, some methodologies in
currently in development allow behavioral synthesis of the
source C code directly into the co-processor. SOPC Builder
is readily able to accept the output from any of these design
flows and likely to add intellectual property (IP) relying
upon these more automated flows in the near future. At the
present time, however, the most robust flows include
VHDL, Verilog and DSP Builder.
 DSP Builder is an extension of the MathWorks
Simulink environment that allows block capture through
hardware implementation. It has been closely integrated into
SOPC Builder specifically to enable the development of co-
processors. With DSP Builder, system designers can
assemble parameterized blocks representing a plethora of
functions ranging from muxes through fully parameterized
finite impulse response (FIR) filters. Once a dataflow
system has been captured in DSP Builder, it can be exported
for use as a co-processor in any processor-based system
assembled by SOPC Builder.

6. CONCLUSION

SDR systems must be designed in a way to ensure they are
sufficiently flexible and reconfigurable to meet both present
and changing standards and operating requirements. A
system architecture that combines processors and co-
processors in a hardware implementation is likely to
produce an optimal result.
 Three different techniques are often used to implement
system reconfigurability, parameterized radio and protocol
modules, exchanging a single component within a module
or exchanging complete radio modules or protocol levels.
Whichever technique is chosen, a combination of processors
and FPGA-based co-processors can handle it.
 It is critical when implementing the reconfigurable
architecture to identify the operations required and to
determine the best type of processing required. Generally,
these operations can be divided into two different groups,
system control and configuration and signal processing path

and control. System control functions will largely reside on
the control processor, while the signal processing data path
and control functions are better assigned to an FPGA-based
co-processor or DSP.
 By off-loading MIPS-intensive algorithms to a co-
processor, a designer can derive several significant system
benefits. Most importantly, performance can be improved
by an order of magnitude or more since a co-processor can
significantly outperform the DSP-based software
implementation. Once the processing load has been reduced,
the main processor is available handle the majority of the
code that absorbs only a small percentage of the required
MIPS. This allows the designer to choose a lower
performance and less costly main processor. In general, this
reduction in main processor cost more than compensates for
the expense of the FPGA-based co-processor
implementation.
 While integrating co-processors and processors has
traditionally been a time-consuming manual process, tools
are now available to automate the process. One of the most
robust is Altera’s SOPC Builder, which includes an
extension of the MathWorks Simulink environment, known
as DSP Builder, to facilitate co-processor integration. Using
these automated tools, which can be expected to become
even more powerful and flexible in the future, has greatly
simplified co-processor implementation and can help
significantly reduce system development time and costs. In
addition, function blocks created using SOPC Builder can
be stored for reuse in future designs, providing additional
time and cost benefits.

7. References

[1] SDR: Enabling Technologies, ed. W. Tuttlebee,
 pub. Wiley and Sons, 2002

[2] “Joint Tactical Radio System (JTRS) SCA

Developer’s Guide”, Rev. 1.1, Raytheon Company

NOTE: Many of the concepts discussed in this paper
are also covered in a chapter in the yet to be published
Software Defined Radio: Baseband Technology for
Cellular Systems, Vol. 2 of the Wiley SDR Series
“Enabling Technology”.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

