Highly Compact & Efficient JTRS Radios using Superconductor MicroElectronics – a quantum leap in performance: THE CRYOPACKAGE

Jack Rosa HYPRES, Inc. 175 Clearbrook Road, Elmsford, NY 10523 http://www.hypres.com

HYPRES, Inc. Elmsford, NY

HYPRES SME Technology

HYPRES technology is so accurate that it defines the Volt, so sensitive that it measures brain currents, so fast that it directly converts RF signals.

Based on a naturally occurring periodic quantum effect — Rapid Single Flux Quantum (RSFQ)

Brings the Power of Digital Processing to the RF Domain and changes the Paradigm of Wireless Communications

SME = Superconductor Micro-Electronics

Fundamental Features Superconductivity

- Ultra-high Sensitivity
- Quantum Accuracy
- Ultra-High Speed
- Ultra-Low Power
- Extremely Low Noise
- Ideal Interconnect
- Fundamental Periodicity

capable of detecting energy of h/2 (magnetic equivalent of an electron)

5ppb accuracy at 10V is achieved

~1ps time constants for 3 um process extendible to 0.1ps for 0.4 um process

pW dissipation in gates and mW in VLSI

>100x lower than any room-temp. technology

negligible loss, dispersion, and crosstalk

coherent electrons in a superconductive loop produce interference fringes analogous to those seen with lasers

Simple Fabrication

~11 steps, no expensive operations

Superconductivity can deliver the ultimate performance for ADC, DAC and DSP

Key Features of HYPRES SME Technology

True Broadband High-fidelity Digitization + Ultra-Fast DSP

- Bandpass ADC clocked at f_{clk} directly digitizes a band centered at a frequency as high as f_{clk}/4
 - Current IC fabrication technology: $f_{clk} = 20-40$ GHz
 - Future IC fabrication technology: $f_{clk} = 160-200 \text{ GHz}$
- Digital circuits and ADC are clocked at the same speed and can be placed on the same chip

Low Noise and Extreme Sensitivity

- Cryogenics reduce thermal noise distortion
- SQUID-based receiver responds to very low RF signals

Relevance to JTRS Objective Requirements

Requirement	OBJECTIVE (>>thresholds)	SME Digital-RF	Technical Risk	Schedule Risk	Cost Risk
Interoperability	100% IERs +commercial	Exceeds	Low	Low	Low
Network Ext. Coverage	Across Org. Boundaries	Enables	Low	Low	Low
Scalable	Clusters134	Exceeds	Low	Low	Low
Support Waveforms	All future WFs	Enables	Low	Low	Low
Simul. Chan. Operation	Veh:8+GPS, Air:10+GPS M/F > 50	Exceeds	Low	Low	Low
Route & Retransmit	All WFs	Enables	Low	Low	Low
Software Configuration	Operator Load/Config	Enables Full Portability	Low	Low	Low
Operational Availability	Ao = 0.99	Exceeds	Low	Low	Low
Internal Growth	Open Sys. Architecture	Enables	Low	Low	Low
Operating Frequency	2 MHz to 2 GHz (T) 100 kHz to 2GHz (R)	100 kHz to 2 GHz++ (including MILSTAR)	Low	Low	Low
Co-Site Interference	External devices	ExceedsInherent in design	Low	Low	Low
Physical Size (in Cu.In) M/F: Channels/rack	Ground:2160, Air LRU:1080 M/F: 10 channels/rack	<500 for both configurations > 100 channels/rack	Moderate (HPA size)	Low	Low
Weight in LBs	Ground: 83, Air LRU: 20 M/F: TBD	Ground: <40, Air LRU: <20 Far less than conventional	Moderate (HPA size)	Low	Low
Power	Not exceed legacy Sys.	< 50% of Legacy Sys.	Low	Low	Low

Note: Objective requirements are >> than threshold requirements

Cryophobia:

Are you afraid of your home refrigerator and air conditioner?

- Superconductors require cooling to deep cryogenic temperatures
 - ◆ 4-5 K for digital electronics, 40-80K for analog electronics
 - Unfamiliar territory for most RF and Communication Engineers
- Recent advances in compact and reliable cryocooler technology eliminates the need for liquid cryogens and bulky closed-cycle refrigerators (cryocoolers)
 - Compact, cryopackaged "high-temperature superconductor" analog filters are very reliable (100-year MTBF) and mounted on top of base station towers

Dispel Cryophobia: Package as an "Electronics Box", making refrigeration transparent to the user

Importance of Cryopackaging in System Realization

Efficient cryopackaging is essential for the deployment of superconducting electronics products in systems

Dispel cryophobia

 Demonstrate superconducting digital electronics on cryogenfree commercial 4 K cryocoolers with seamless interface with room temperature electronics

□ Reduce the size, weight, and power

 Improve cryopackaging techniques to reduce the peripheral heat load on the cryocooler

- "Cryopackaging" means providing a controlled lowtemperature, mechanically stable, electromagnetically shielded environment for superconductor ICs with input/output leads providing electrical connections with room temperature electronics.
 - Thermal: Cryocooler
 - Mechanical: Mount for chip or multi-chip module
 - Electromagnetic: RF, radiation and magnetic shielding
 - Electrical: RF and DC leads, circuit boards, contacts

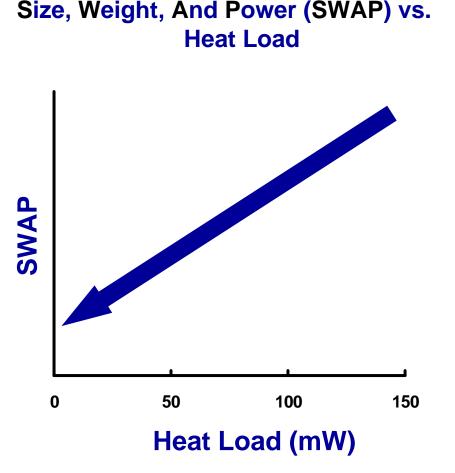
Sources of Cryocooler Heat Load

□ Power dissipation of RSFQ digital circuits is very small

- Switching energy per junction ~ $\Phi_0 I_c \sim 10^{-18} J$
- ◆ Dynamic power per junction at 100 GHz ~ 10⁻⁷ W
- Static power per junction ~ V_bI_c ~ 2×10⁻⁷ W
- Total power for a circuit with 5000 junctions ~ 1 mW
- □ Heat load is dominated by input/output (I/O) leads
 - Typical heat load of a cable, thermalized at an intermediate temperature, to 4.2 K stage ~ 1 mW
 - Total power for 50 cables ~ 50 mW
- □ Radiation heat load can also be large (\propto T⁴)
 - Radiation shields attached to intermediate temperature stages

Heat Load for Digital-RF Receiver Demonstration

Anticipated Heat Load for HYPRES 2-channel Digital-RF Receiver Prototype


Source of Heat	Heat Load (mW)		
On chip power dissipation (3 ICs on MCM)	3 A	2 mV	6 (<6% of Total)
Thermal Radiation from 300K and 60K sources			<25
Input/Output Leads	Heat per Line (mW)	Number of Lines	81
DC Bias Lines (32 AWG phosphor bronze @ 12 mW/A)	1.2	30×2 = 60	72
DC Voltage Monitors (32 AWG phosphor bronze)	0.1	10×2 = 20	2
20 GHz Clock Input (UT-34-SS-SS coax)	0.65	1	0.65
Digital High Speed Output Lines 1 GHz (BeCu)	0.3	8	2.4
Analog Input Signal (BeCu Ribbon)	0.3	2	0.6
Extra High Speed Lines	0.3	10	3
Total			<112 mW

Note: Optimum heat load for metallic conductor between 50 K and 4 K is 12 mW/A

Multiple Approaches to Heat Load Reduction

- HTS leads provide excellent electrical conductance and reduced thermal conductance
- Output multiplexing reduces number of output leads
- Bias current recycling reduces total DC bias current
- Radiation load can be reduced by use of intermediate temperature shields

Design to Match JTRS Specifications

Anticipated Heat Load for HYPRES 10-channel JTRS Transceiver – Initial

Source of Heat	Heat Load (mW)		
On chip power dissipation (20 ICs on MCM)	20 A	2 mV	40 (30% of Total)
Thermal Radiation from 300K and 60K sources			<25
Input/Output Leads	Heat per Line (mW)	Number of Lines	72
DC Bias Lines (HTS DC Leads, @ 1 mW/A)	0.2	100×2 = 200	40
DC Voltage Monitors (32 AWG phosphor bronze)	0.1	10×2 = 20	2
On-chip Clock	0	0	0
Digital High Speed Output Lines 1 GHz (BeCu)	0.3	80	24
Analog Input Signal (BeCu Ribbon)	0.3	20	6
Total			<137 mW

Cryocooling Requirements for HYPRES JTRS Transceiver matches well with Compact Cryocooler (500 cu. in., 400 W)

Design to Exceed JTRS Specifications

Anticipated Heat Load for HYPRES 10-channel JTRS Transceiver – Improved

Source of Heat	Heat Load (mW)		
On chip power dissipation (20 ICs on MCM)	20 A	2 mV	40 (50% of Total)
Thermal Radiation from 300K and 60K sources			<25
Input/Output Leads	Heat per Line (mW)	Number of Lines	16
DC Bias Lines (HTS DC Leads with current recycling, @ 1 mW/A)	0.2	10×2 = 20	4
DC Voltage Monitors (HTS RF Leads)	0.1	10×2 = 20	2
On-chip Clock	0	0	0
Digital High Speed Output Lines 1 GHz (HTS RF Leads)	0.1	80	8
Analog Input Signal (HTS RF Leads)	0.1	20	2
Total			<81 mW

Cryocooling Requirements for HYPRES JTRS Transceiver <u>fits well within</u> Compact Cryocooler (< 500 cu. in., < 300 W)

Design to Go Beyond JTRS Specifications

Anticipated Heat Load for HYPRES 10-channel JTRS Transceiver – Advanced

Source of Heat	Heat Load (mW)		
On chip power dissipation (20 ICs on MCM)	20 A	2 mV	40 (70% of Total)
Thermal Radiation from 300K, 60K, and 15 K sources (using 3-stage cryocooler)			<5
Input/Output Leads	Heat per Line (mW)	Number of Lines	12
DC Bias Lines (HTS DC Leads with current recycling, @ 1 mW/A)	0.2	10×2 = 20	4
DC Voltage Monitors (HTS RF Leads)	0.1	10×2 = 20	2
On-chip Clock	0	0	0
Digital High Speed Output Lines 1 GHz (HTS RF Leads, output multiplexing)	0.1	40	4
Analog Input Signal (HTS RF Leads)	0.1	20	2
Total			<57 mW

Cryocooling Requirements for HYPRES JTRS Transceiver <u>permits</u> further reduction in Cryocooler SWAP (<< 500 cu. in., <200 W)

Design to Go Beyond JTRS Specifications

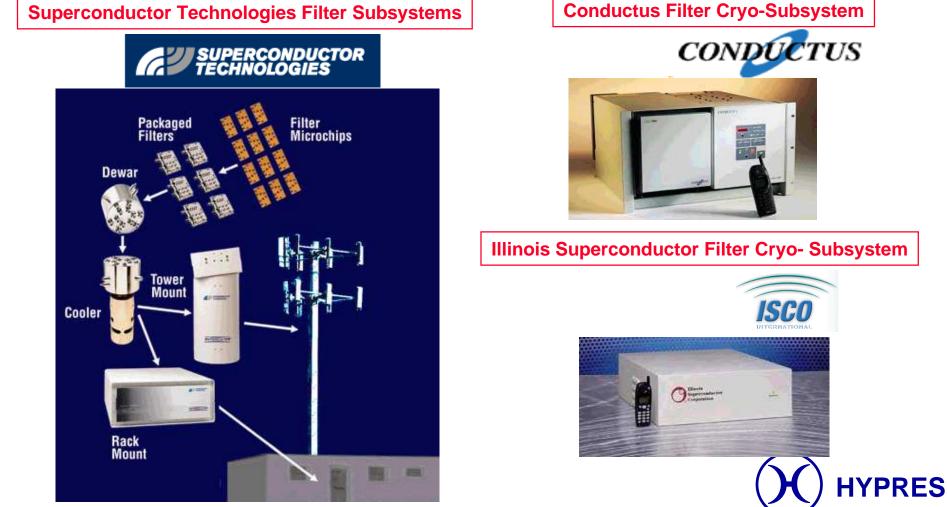
Anticipated Heat Load for HYPRES 4-channel JTRS Transceiver – Advanced

Source of Heat	Heat Load (mW)		
On chip power dissipation (6 ICs on MCM)	6 A	2 mV	12 (52% of Total)
Thermal Radiation from 300K, 60K, and 15 K sources (using 3-stage cryocooler)			<5
Input/Output Leads	Heat per Line (mW)	Number of Lines	5.6
DC Bias Lines (HTS DC Leads with current recycling, @ 1 mW/A)	0.2	3×2 = 20	1.2
DC Voltage Monitors (HTS RF Leads)	0.1	10×2 = 20	2
On-chip Clock	0	0	0
Digital High Speed Output Lines 1 GHz (HTS RF Leads)	0.1	16	1.6
Analog Input Signal (HTS RF Leads)	0.1	8	0.8
Total			<23 mW

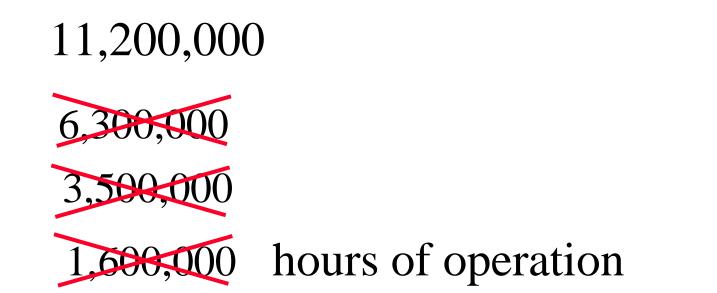
Cryocooling Requirements for HYPRES JTRS Transceiver <u>permits</u> further reduction in Cryocooler SWAP (<< 400 cu. in., <100 W)

What are "Cryocoolers" ?

- Self-contained closed-cycle refrigerators
- Provide thermal conditioning ("Cold Bus")
- □ Enabling "package"
- □ Part of the "Power Supply"
- Available in various configurations from multiple commercial suppliers


Cryocoolers in Use

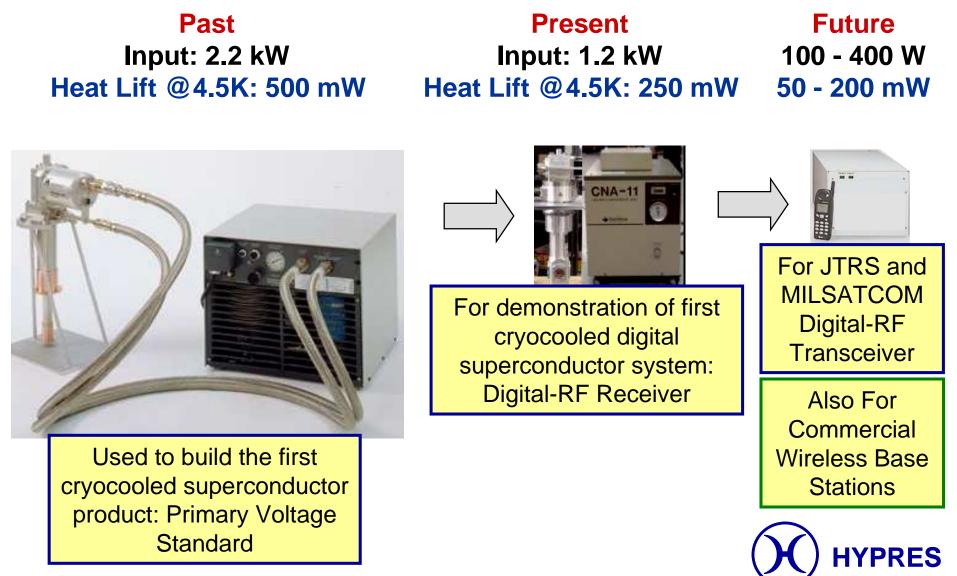
- Cryocooled superconducting filters fielded today in military systems
 - Conforms to all military specifications
- Cryocooled superconducting filters fielded today in commercial cellular base stations
 - ◆ 99.998% Uptime, MTBF of 90+ years
- □ Cryocoolers deployed in space
 - Passed space qualification, outlived spacecraft
- □ Cryocoolers used in vacuum systems in semiconductor foundry
 - Conforms to highest reliability requirements



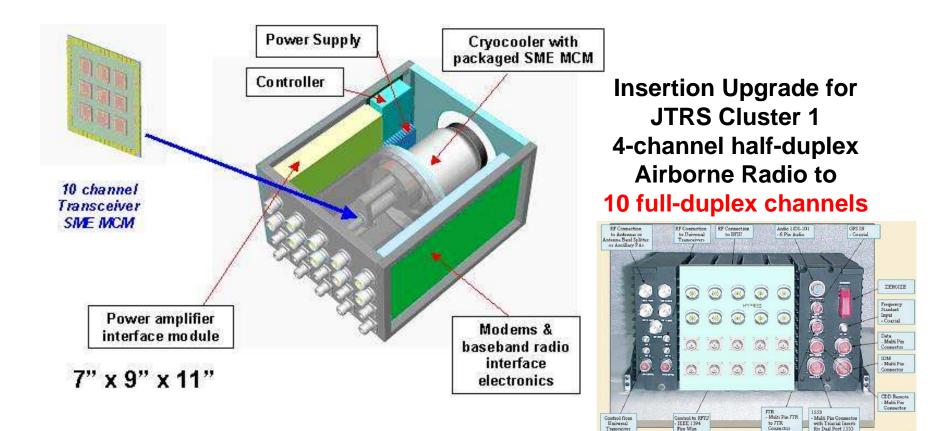
Cryocoolers are in field use today: Commercial Systems -Communications

Over 3000 HTS filter subsystems permanently installed Volume sales to major customers underway

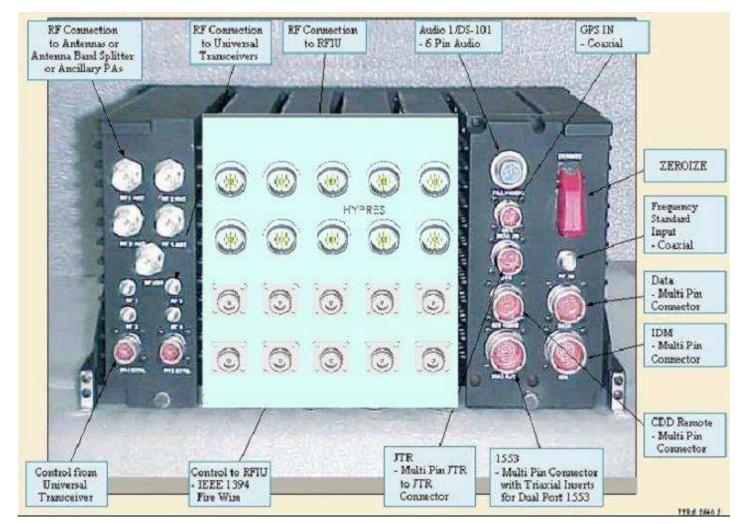
Demonstrated Reliability



Demonstrated MTBFs of 90+ years!!


Estimated uptime of 99.998%

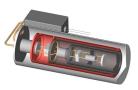
Progression of Commercial Cryocoolers for Digital-RF Systems


JTRS 10-channel Wideband Digital RF

Designed for stand-alone and technology insertion applications

10-channel full-duplex JTRS Transceiver Module with SME Transceiver inserted into the JTR

Replaces 4 individual half-duplex transceivers and upgrades the radio to a 10-channel full-duplex functionality


Cryocooler Choices/Advantages

- □ Key enablers of high performance, demonstrated in:
 - Wireless cellular communications (HTS filters)
 - Mine detection
 - Highest sensitivity radar receivers
 - IR imaging systems
- Proven to meet any and all requirements as designed:
 - Reliability (demonstrated MTBF of 90+ years)
 - Ruggedness (proven in space environment)
 - Combat environment (proven in IR imaging systems)
 - Efficiency (MEMS package)
- Multiple vendors (ready to perform) and approaches leading to competitive choices and selection:
 - Commercial vendors (Leybold, Air Liquide, Sumitomo)
 - Military contractors (Ball Aerospace, Lockheed Martin)
 - Small Business (TAI, Sunpower, Creare)

Performance/Reliability exceeding JTRS Requirements Assured

Cryocooler FAQ

□ Will cryocoolers work on a military vehicle?

- Yes. Cryocoolers have been demonstrated to withstand vibration, shock, and gyration.
- □ Are cryocoolers orientation sensitive?
 - Some cryocoolers are while others are not. For orientationsensitive cryocoolers, the cooling efficiency decreases for large tilt angles to a lowest value in horizontal position. With proper heat load margins, this should not affect operation.

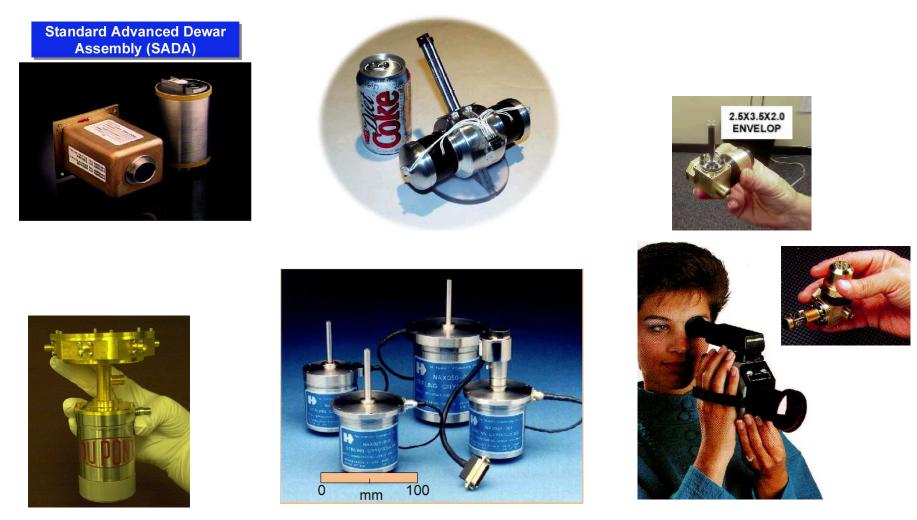
□ Did any cryocooler pass MILSPEC?

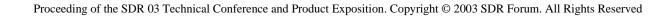
 Yes. Cryocooled electronics, including superconducting filters, have been deployed in military systems.

□ Are cryocoolers reliable?

Yes. Cryocoolers have been demonstrated to be more reliable than electronics in cellular base stations. They are considered to be maintenance-free and are placed on top of towers.

HYPRES SME Technology


Brings the Power of Digital Processing to the RF Domain and changes the Paradigm of Wireless Communications


Backup Slides

Multiple Proven Approaches to Compactness and Miniaturization

Cryocoolers are in field use today: Military Systems

V4500 Shipt

TUAV

NightMaster

Shipboard

Tank Gun Sigl

Laser Designator Rangefinder

> LAV III Thermal Imager

Fire Control

Imaging Systems w/ Stirling Coolers

IR Missile Seekers w/ J-T Coolers

CMC electronics

MHIP (Missile Homing Improvement Program)

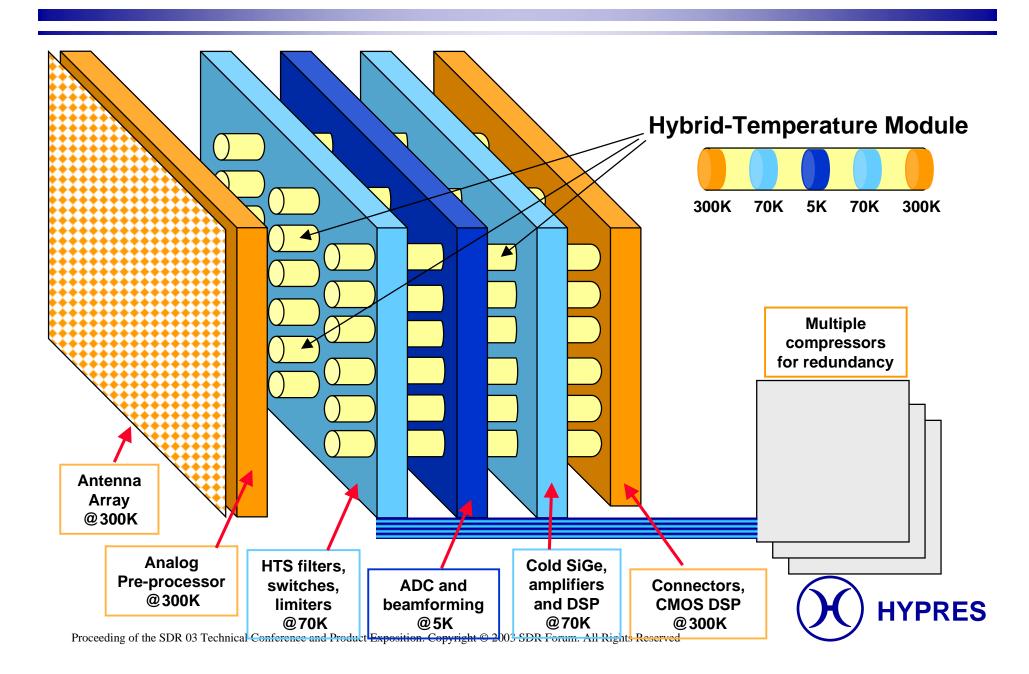
> 12 Inch Diameter Gimbal System

IR Tracker

Attack Submarine

Non-Penetrating

E-O Mast


RAM (Rolling Airframe Missile) & RAM IRMU

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

F-18 AT FLIR

Phased Array Cryopackage Concept

