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ABSTRACT 
 
Design techniques are presented for FPGA based 
waveforms on Software Defined Radios (SDRs). The 
benefits of using these techniquies will be highlighted. 
 
This paper assumes that FPGAs will be the target 
processor for all real time signal processing of a 
waveform. The role of software processors will also be 
analyzed with respect to the FPGA based waveform. The 
techniques presented in this paper are the result of 
internal research and development for General Dynamics 
wideband modem development.  
 
In waveform development, the FPGA has been sucessfully 
exploited to cover areas where high-speed and low 
latency signal processing is demanded. FPGA waveform 
design flow has many trade-offs and the types and 
efficiency of different design flows will be presented. 
FGPA integration flow also has benefits and limitations 
that will be identified. 
 
Quantization and optimization techniques for FPGA 
utilization will be shown for waveform development. 
Multi-Mode and Multi-waveform FPGA designs will also 
be discussed. 
 
FPGA waveform interfacing methods will be discussed as 
a means for communication between various system 
processors. 
 
Various partitioning methods of control/data processing 
vs. signal processing will also be shown. 
  

1. INTRODUCTION 
 
Software Defined Radios (SDRs) are mainly composed of 
two distinct entities: The hardware platform and the 
software application. The applications are known as 
“waveforms” and can be implemented in either real-time 
software, FPGA logic, or a combination of both. 
Regardless of implementation, the radio system is defined 
by the waveform running on the platform. 
 

2. FPGA BASED PLATFORM ARCHITECTURES 
 
In order to implement FPGA Based Waveforms 
efficiently, the SDR platform architecture must be 
appropriately defined. Many SDR platforms contain a mix 
of FPGA, Digital Signal Processor (DSP), General 
Purpose Processor (GPP), and ASICs. These mixed 
architectures tend to offer the waveform designer a non-
homogenous development environment. Hence, many 
different disciplines and interfacing challenges exist that 
impede the development of real-time waveforms.  
 To remedy this situation, the layout shown in Figure 1 
may be used. Here, FPGAs are the central real-time 
processing machines connected together with high speed 
data buses. Sparse GPPs are used for control and non-real 
time processing. This philosophy is similar to that of the 
PC computer, which uses a GPP to interface with the user 
while it controls dedicated hardware such as modems, 
video display cards, audio cards, DVD players, and other 
real-time processing peripherals.   
 Another reason for selecting such architecture is that 
software programming is most easily done for non-real 
time tasks. Again, the PC computer is an excellent 
example of this point. It demonstrates a software 
controlled system rather than a software defined one. 
 Finally, there are some very good benefits from 
choosing an all FPGA based platform. These benefits 
include: low-latency, high speed, parallel processing, real 
time synchronization on a sample by sample basis, and 
real time telemetry monitoring. 
 Embedded Microcontrollers and on-chip GPPs are 
available inside FPGAs and can be used for control and 
non-real time processing in addition to external GPPs. 
 Military systems require separation of Black and Red 
Data. This is usually controlled by the NSA and therefore 
separate hardware devices are needed for the security 
section of the platform. Also, FPGA Based Waveforms are 
easily made Software Computer Architecture (SCA) 
compliant. A simple software interface object to FPGA is 
required to encapsulate the FPGA functions. 
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Figure 1. FPGA Based System Architecture. 
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Table 1. Partitioning of FPGA Based Waveform Functions Across the Platform Architecture
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3. FPGA WAVEFORM PARTITIONING AND 
INTERFACING 

 
One of the first steps in the waveform design process is to 
partition the various waveform functions across the 
platform. Since we have chosen to use only FPGAs and 
GPPs, this partitioning is made easier. Table 1 contains a 
listing of commonly used waveform functions divided into 
each section of the FPGA based platform. 
 Some partitioning trade-offs exist between Modem 
FPGA and Audio/Video FPGA depending if security is 
needed. For non-secure waveform modes, audio filtering 
and conditioning may be done in the modem section closer 
to the modulation/demodulation functions, or it could be 
performed in the audio/video section closer to the I/O 
source/sink. Another area where partitioning trade-offs 
exist is between RF and Modem sections. Such functions 
as RF AGC and selectivity filtering can be allocated in 
either domain depending on the amount of digital 
processing. 
 Interfacing the different platform sections can be done 
in a variety of ways depending on the data speed and 
flexibility requirements of the platform. In some cases, it 
may be required to have each modem FPGA have full 
access to each RF section through the use of a fabric 
switch [1]. Dedicated or multiplexed direct hardwire 
connections can also be used to connect FPGAs with other 
hardware devices. 
 A key difference between DSP processor (serial) 
based platforms and FPGA (parallel) based platforms lies 
in the routing of data. For DSP processor platforms the 
data must be packetized and the exact time of each data 
sample is not known unless costly time-stamping is 
applied. This idea is contrary to the concept of FPGA 
based waveforms. Ideally, the data processed by the FPGA 
can be modeled sufficiently such that transfer between 
FPGAs is well defined and synchronized on a sample-by-
sample basis. 
 One advantage of FPGA based processing is that co-
location of speed intensive functions such as FFTs may be 
multiplexed or shared in the same FPGA. This 
dramatically saves resources compared with running 
several FFTs in different processors and having to 
communicate between them. Let us extend this philosophy 
a bit further by suggesting that other memoryless 
waveform functions such as certain 
modulators/demodulators can be multiplexed within a 
given FPGA. Functions with memory could also be 
multiplexed such as FIR filters but some additional 
resources would be needed to store coefficients and tap 
values.  
 
 
 

4. MULTI-MODE AND MULTI-WAVEFORM FPGA 
DESIGN 

 
Many current and future waveforms have multiple modes 
of operation. These modes include combinations of the 
following: plain text (PT), cipher text (CT), single-channel 
(SC), frequency-hopped (FH), Voice, Data, TDMA, 
OFDM, FEC, DS spread spectrum, and various 
modulation types.  
 Multi-Mode waveforms require that a single instance 
of the waveform application be able to switch between 
various modes upon user command within several hundred 
mili-seconds in most cases. To accomplish this within an 
FPGA(s), either serial or parallel implementations may be 
considered. The most straightforward approach is the 
parallel Multi-Mode Waveform Model shown in Figure 2. 
Here all of the functions needed for the various modes are 
designed and implemented at the same time in the FPGA. 
When a different mode is selected, certain functions are 
bypassed and others brought in-line. The advantage to this 
approach is that the design cycle is short. The 
disadvantage is that more FPGA resources are consumed 
than are needed for any given one mode. An alternative to 
the parallel approach is the serial multiplexed scheme. 
This method is depicted in Figure 3. Here a core library of 
waveform functions is designed and placed in a repository 
on the FPGA. A core controller is then used to multiplex 
the functions between different waveform application 
cores or modes. In effect, the core library can be thought 
of as a group of subroutines that get called whenever a 
waveform application needs the service. The core 
controller management complexity is a disadvantage of 
this scheme however; the savings in resources may 
outweigh this cost. 
 Multi-Waveform FPGA design is a challenging area. 
The driving requirements in this area are the number of 
simultaneous waveform applications per FPGA and the 
ability to “Swap” applications on the fly. Three 
approaches will be described for handling these 
requirements: 1.) Dynamic Reconfiguration, 2.) Static 
Partitioned Waveforms, and 3.)  Shared Core Library 
  The first approach deals with Dynamic 
Reconfiguration, which is also known as dynamic partial 
reconfiguration. This off-the-shelf approach allows 
swapping applications in and out of the same FPGA 
without disturbing any applications that are already 
running. Details are specified in [2] for implementing 
Dynamic Reconfiguration however, not many FPGA 
developers are reported to have used this method and it 
may take more users for this to be a useful technique of 
multi-waveform design. Dynamic Reconfiguration does 
not affect nor can it be influenced by, the FPGA design 
flow since it is a manipulation of the compiled source 
code. 
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 The second multi-waveform approach is that of Static 
Partitioned Waveforms. This is shown in Figure 4. Here, 
multiple waveform cores are designed into a single FPGA 
and run simultaneously, however, they cannot be swapped 
out unless each application has its own FPGA.  
The third approach to multi-waveform design uses a 
shared core library that is also useful for multi-mode 
waveforms within a multi-waveform FPGA. This was 
introduced in Figure 3 and is elaborated on in Figure 5 for 
the multi-waveform scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Parallel Multi-Mode Waveform Model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Serial Multiplexed Multi-Mode Waveform 
Model. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Parallel Multi-Waveform Model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Serial Multiplexed Multi-Waveform Model. 
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5. FPGA WAVEFORM DESIGN FLOW 
 
 New FPGA design flows [3] based on high-level, 
parallel, simulation environments offer code synthesis 
directly from a block diagram systems model. At the 
center of these new design flows are tools that allow 
access to hardware interfaces and abstract the FPGA fabric 
to a systems level. This gives the systems designer direct 
insight into the platform for which he is designing a 
particular function. This is made possible by the bit true 
and cycle true abilities of these tools. One problem with 
traditional design flows is that the system designer does 
not have insight into the implementation details of the 
fabric and therefore cannot best optimize the system 
design without lengthy interaction and written 
communication with implementation engineers who use 
low-level tools such as VHDL, Verilog, or schematic 
capture. An example of an FPGA based waveform done 
using the Xilinx System Generator in Matlab Simulink is 
shown in Figure 6 [4]. 
 In addition, to direct code synthesis from the systems 
model, the model can also serve as a systems 
documentation vehicle. Some tools such as Matlab 
Simulink support document generation from the model 
itself and this can be coupled with other tools such as 
Requisite Pro and Rational Rose to form a complete 
system definition and code producing model. At this time 
there is not a definitive link between these tools. One 
feature that could be added would be a way to 
automatically verify system requirements with model- 
generated data. For example, the system requirement may 
call for a certain Bit Error Rate (BER) at a given input 
power to the system. When the model is run, data from the 
BER calculation block could be mapped to a Requisite Pro 
requirement to mark it verified at the system design level. 
Other requirements that may be mapped are latency, 
attack/release times, acquisition times, and distortion. 
 Another valuable feature of Matlab Simulink is the 
ability to do co-simulation with the target FPGA while 
running other Simulink components. This process involves 
compiling the FPGA code for the target and placing a co-
simulation block in model. Then, data from the model can 
be routed in and out of the real-time operating block. The 
co-simulation block could also be part of an actual system 
with RF and ADC/DAC interfaces so as to allow very 
accurate simulation at a high level of abstraction. 
 
 

6. FPGA WAVEFORM INTEGRATION FLOW 
 
 Once an FPGA based waveform has been designed, 
simulated, synthesized, and place/routed, the integration of 
the bit file with other FPGA bit files and GPP software 
must be done to realize the fully functioning waveform. 

Since most of the critical real-time functions were 
simulated and proven during the design flow, the risk and 
duration of waveform integration is greatly reduced. 
 One advantage of using a highly accurate model to 
synthesize the FPGA code is that test vectors can be taken 
from the system under integration to compare with the 
model. Also, test vectors from the model may be used in 
DSP signal generating equipment to provide a stimulus of 
known data. If problems are found during integration the 
model must be updated and the FPGA bit file must be 
regenerated. This is the only disadvantage to this approach 
compared with DSP processor based waveforms in which 
coded changes can be recompiled in a shorter time. 
However, the risk of code errors is greatly reduced by 
using the FPGA design flow with accurate system models. 
 
 

7. FPGA WAVEFORM QUANTIZATION 
 
 During the FPGA waveform design flow, it is best to 
first create a floating point model using the FPGA 
Simulink blockset with the “Override with Doubles” 
option turned on. This can be done at the block primitive 
level or globally for a system or subsystem in Simulink to 
allow simulation of a system with 64 bit floating point 
precision. 
 Once confidence is gained with the floating point 
model, the quantization process should begin. Each block 
in the model must be analyzed for fixed-point properties 
such as Number of Bits, Binary Point Position, Arithmetic 
type (Unsigned or Signed), Quantization Behavior (Round 
or Truncate), and Overflow Behavior (Wrap or Saturate). 
In addition, any filter coeficients must also be analyzed for 
fixed piont behavior.  
 Fixed point filter design can be done using the Matlab 
Filter Design and Analysis Tool (fdatool) by entering the 
“Set Quantization Parameters” window and enabling 
“Turn quantization on”. In this window all of the filter 
arithmetic and filter coeficients can be quantized and a 
graph of both floating and fixed point responses are shown 
in the window above. By adjusting the fixed-point 
properties of the filter, one can visually approximate the 
floating point behavior for such responses as Magnitude, 
Phase, Group Delay, Impulse Response, Step Response, or 
Pole/Zero configuration. 
 One feature that could be added to these tools is a 
Processing Gain Analyzer to estimate scaling and bit sizes. 
To do this manually involves tedious effort and is a 
disadvantage of the FPGA waveform approach. For 
example, a digital phase-locked loop contains feedback 
with a loop filter that can be very sensitive to dynamic 
range. When attempting to quantize a recursive circuit 
such as this, one must pay careful attention to the growth 
of registers and apply scaling after each multiply 
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operation. The trade-off here is that input dynamic range 
will dictate the maximum “Number of Bits” and “Binary 
Point Position”. However, since there is feedback in the 
loop, the input to the loop filter can change its output 
which inturn mixes with loop input to infuence the loop 
filter input. Bounds must be estimated at each stage and at 
each arithmetic calculation point to control the register 
growth or quantization error.  
 Overall, the goal of Quantization is to approximate 
floating point operation with a minimum amount of FPGA 
resources while meeting system performance requirments. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. FPGA Based Waveform Model using Xilinx/Matlab Simulink Design Flow. 
 
 

8. CONCLUSION 
 
 In this paper, concepts and techniques were given for 
FPGA based waveform design. An FPGA based system 
architecture and mapping of waveform functions was 
shown, suitable for future military JTRS type 
communications applications. Both Muti-Mode and Multi-
Waveform applications were discussed in relation to 
FPGA based systems. An efficient design flow was 
overviewed along with a corresponding integration flow. 
Techniques for FPGA waveform quantization were given 
as well. 
 As DSP computing technology migrates from the 
serial, instruction set architecture, von Neumann machine 
to the parallel, system based design flow, FPGA based 
systems and waveforms will be an enabling technology for 
higher speed and more complex communication systems. 
The end result will be that waveforms can be developed 
faster with more features.   
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