

A FLEXIBLE CHIP RATE PROCESSOR FOR CDMA RAKE RECEIVER

Zhuan Ye (Motorola Labs, Schaumburg, IL, USA; zhuan.ye@motorola.com)
Yun Kim (Motorola Labs, Schaumburg, IL, USA; yun.kim@motorola.com)

Anthony Schooler (Motorola Labs, Schaumburg, IL, USA;
anthony.schooler@motorola.com)

ABSTRACT

This paper presents a chip rate processor suitable for
software implementation of rake receiver for CDMA. The
implementation is based on a novel code generator, a
parallel correlator, and the traditional processor architecture.
The code generator is capable of generating the dispreading
codes for various CDMA systems. The correlator unit
performs parallel correlation between the received samples
and the generated codes. The processor allows the
algorithms of rake receiver for different CDMA standards to
be realized using different software on the same hardware. A
scalable software approach to implement rake receiver
algorithms on this processor is also presented. The processor
is implemented using synthesizable Verilog HDL
description.

1. INTRODUCTION

The software definable radio (SDR) advocates more flexible
or “soft” approaches to implement key physical layer signal
processing algorithms for radios. A good working definition
of software radio is a radio that is substantially defined in
software and whose physical layer behavior can be
significantly altered through changes to its software [1]. One
particular radio standard, CDMA based standard, has gained
a lot of popularity since its initial commercialization in the
1990’s. Currently there exist many standards within CDMA
framework, for example, IS-95, CDMA2000, and WCDMA.
It will be desirable that multimode operations for these
CDMA standards can be achieved by software change
without relying on multiple sets of hardware.

The availability of high speed digital signal processors
(DSP) has made it possible to implement more and more of
radio’s physical layer processing in software. But the chip
rate processing for rake receiver, which is an integral part in
CDMA baseband processing, is still most likely carried out
by dedicated hardware or ASIC. These ASICs are generally
not designed to be flexible enough to perform multimode
operations. Flexible architectures of rake receiver have been
discussed in recent publications [2] and [3], but these

architectures still lack the real software upgrade-ability that
defines software radio.

Rake receiver is used in CDMA baseband processing to
take advantage of multipath diversity. This is one of the
most important capacity improvement features of CDMA
systems [2]. This paper presents a novel approach to
implement rake receiver algorithms for different CDMA
standards on a common processor, chip rate processor
(CRP). The CRP performs parallel generation of the
despreading codes, and parallel correlation between the
received samples and the generated codes. The flexible code
generator can generate the despreading codes for various
known CDMA systems. The algorithms of rake receiver can
be implemented on the CRP using modular software
architecture.

This paper is organized as follows. First the
functionalities of rake receiver are introduced in general.
Then the hardware architecture of the CRP is discussed in
more detail. In the next section, the software architecture for
an IS-95/CDMA2000 system is discussed. Finally,
simulation results are presented and conclusions are drawn.

2. RAKE RECEIVER

Due to multipath propagation, the transmitted signal is
replicated several times when arriving at the receiver in
wireless systems. Each path arrives with different amplitude
and time delay. A rake receiver separates the different
multipath components and forms the weighted, phase
adjusted, and delay adjusted sum of these multipath
components [4]. A functional block diagram of rake receiver
with three rake branches is depicted in Figure 1. The number
of rake branches determines the number of multipath
components that can be exploited to combine their energy.

Typically, rake branches are assigned to distinct
multipath components according to multipath search results.
These components have different energy, carrier phase, and
are delayed in time relative to one another. The processing
involved in a rake branch can be divided into two categories:
chip rate processing and symbol rate processing. The chip
rate processing block performs the front-end despreading
and correlation functions. The input to this block is the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

digitized baseband complex signal. First, the rake branch
generates the appropriate despreading sequences needed to
remove the spreading sequences imposed at the transmitter
side. Then the despreaded pilot samples and data samples
are accumulated over certain period to produce pilot symbol
and data symbol correlator outputs. These outputs are
further used by symbol rate processing blocks to perform the
other essential functions of rake receiver: channel
estimation, frequency offset estimation, data symbol
recovery, etc. Data symbol recovery process employs
coherent detection to calculate weighted and delay adjusted
sum from several multipath components, also known as
Maximum Ratio Combining (MRC). MRC requires an
estimate of the transmission channel of each multipath. This
estimate is much more precise if performed on an
unmodulated signal, or the pilot signal in a typical CDMA
system. That is why rake branch involves correlations for
both pilot channel and data channels. More correlations are
performed on the pilot channel as well in order to track the
timing difference between receiver and transmitter. The de-
skew processing adjusts the delay among different multipath
components before the MRC is performed.

Data rates involved in symbol rate processing are lower
compared to that involved in chip rate processing. In
addition, the symbol rate processing also requires a fair
amount of mathematical functions such as conjugate
multiplication, multiply and accumulate, etc. Therefore the
symbol rate processing is more suitable to be carried out on
DSPs. On the other hand, the chip rate processing involves
relatively simpler, higher data rate, and shorter word-length
processing tasks, thus making it more desirable to be
implemented on ASICs. These ASICs are less flexible
although they traditionally have higher performance and less
power consumption. Some vendors have started to
emphasize the flexibility of their solutions to support
multimode operations of radio. The CRP is also intended to
be an evolving SDR replacement of dedicated ASIC to
perform chip rate processing.

3. HARDWARE ARCHITECTURE

The CRP is a standalone processor consisting of an
instruction-decode unit, a branching unit, and three
processing units. In addition, the processor has three
memory instances, one for the instructions (instruction
memory), one for the operands (operand memory), and
another for the input data samples to the CRP (input
memory). A memory control unit generates and arbitrates
addresses and control signals to all of these memory
instances. The three processing units in the CRP are: the
code generator unit, the correlator unit, and the general-
purpose ALU unit. The centralized register file provides
operands to the three processing units, while the operand
memory serves as storage for various purposes. Figure 2

illustrates the major blocks of the CRP and the inter
connections among these blocks.

The code generator unit is designed to generate the
despreading codes used by a variety of CDMA standards. It
is capable of generating the pseudo-random noise (PN)
sequences for CDMA2000, WCDMA, GPS, and several
other periodic codes. The correlator unit is used to correlate
the input data with the despreading codes and provide a
complex correlation sum. The correlation sum can then be
accumulated with a previous sum to calculate the correlator
output in the rake receiver. The general-purpose ALU unit is
responsible for performing miscellaneous arithmetic
operations such as addition, subtraction, multiplication, etc.
The general-purpose ALU will also set the flags that control
the subsequent conditional branching instructions, which
allows complex program flow. Most of the datapaths in the
CRP are complex, reflecting the I/Q inputs used in baseband
digital receiver. However, some of the operations in the
general-purpose ALU unit can revert back to a non-complex
mode when needed.
 The register file provides 40-bit complex operands and
a storage place for the three processing units of the CRP. It
is composed of two read ports and one write port to
accommodate single cycle operation. Movement of data
between the register file and the operand memory is
achieved through the memory controller unit. The input
memory is a single write, single read memory composed of 4
banks of memory. Only the analog to digital converters
(ADC) can write into the input memory, and the CRP can
then control the read behavior of the input memory as
dictated by the programming. The operand memory is a
single port memory primarily used as long-term storage of
variables. The instruction memory is for the storage of the
instructions of the CRP. Once loaded, the instructions are
fetched in sequence and decoded by the instruction decode
unit for appropriate interpretation.
 The CRP is capable of performing branches using its
own branch unit. The branching operations can be either
unconditional branches or conditional branches. The
assembly code for the CRP supports programmer hints for
predictive branching in order to reduce the number of stalled
cycles. Hardware loops are supported for zero overhead
loop structures in the CRP. Furthermore, up to 4 loops can
be nested creating a potential for very complex program
flow.

The flexibility of the CRP lies mostly in the code
generator unit and the correlator unit.

3.1 Code Generator Unit

The code generator is capable of generating 4 consecutive
bits of various spreading codes in one clock cycle. In
particular, the unit is optimized to generate codes that are
specified using linear feedback shift registers (LFSR) as

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

required by modern CDMA standards; however, the unit is
not limited to such codes. Figure 3 is a coarse block
diagram of the 20-bit code generator in the code generator
unit. The code generator is actually composed of two such
processing units, one for the imaginary part and the other for
the real part. The description of the code generator from
hereon will focus on the operation of this 20-bit code
generator.

The code generator employs Fibonacci configuration of
the LFSR to generate PN sequences [5]. In this paper, the
contents of the shift register are referred as the state, and the
feedback tap weights are referred as the mask. The state and
the mask are the two fundamental input operands to the code
generator. The two values are bitwise ANDed by 20 AND
gates, and XOR reduced to a single bit. In a typical single
bit PN generator, this resulting bit will be shifted into the
LSB of the LFSR. However in the CRP’s code generator, a
temporary “next state” is created using the shifting
operation. The new resulting state value is once again
bitwise ANDed with the original mask and XOR reduced to
create another resulting bit. The process is repeated two
more times until 4 consecutive PN bits are generated. The 4
generated bits are presented to the holding register called
PNflags to be used by the correlator unit. Meanwhile, the
updated state, with the 4 new values shifted in the LSBs of
the state are written back into the register to be used in
future PN generation routines.

Additional hardware blocks are also included in the
code generation unit for more flexibility. The first block of
such hardware is a 20-bit shift register. The shift register is
used to build a complete 20-bit state value. The new state
value is assembled 4-bits per clock cycle into the shift
register. When the 20-bit state is complete, the result can
then be stored in the register file. This is a convenient
means of combining the results from the 5 previous code
generations into a single 20-bit result. The mechanism is
useful when generating a future state value for a quick jump
in PN sequence cycle (e.g. jumping ahead by 20,000 PN
bits).

The second additional hardware is a 4-bit accumulator.
The accumulator is used to modify the current LFSR code
by other LFSR codes or a constant. The accumulator
provides a convenient temporary 4-bit storage where a code
can be XORed with other codes. For instance, generation of
Gold codes can be accomplished using the accumulator.
The first set of LFSR PNs can be stored in the 4-bit
accumulator. Then, the second set of LFSR PNs can be
generated and XORed with the 4-bit accumulator resulting
in 4 consecutive bits of Gold code.

Another additional hardware is the 4-bit carry register.
Basically, the carry register provides storage for 4 MSBs of
the previous state (operand). At the output stage of the code
generator unit, where the state value is written back to the
register file, a multiplexer selects either the carry register or

the generated PN code to be fed into the 4 LSBs of the
outgoing state. This is the mechanism by which the state
information from previous operation can be passed on to the
next operation. Such operation is useful when dealing with
LFSR of greater than 20-bits in length. Theoretically, the
code generator is capable of generating any length LFSR by
computing 20-bit segments of the LFSR per clock cycle;
however, generation of codes specified by longer LFSR
would consume more cycles.

Walsh code generation is also possible on the code
generation unit of the CRP. Walsh code generation is not a
complex operation, therefore both the real and imaginary
code generators can be used to generate two sets of
independent Walsh codes. Generation of Walsh code begins
with the column address and row address as operands to the
code generator unit. It requires some extra decode logic
besides sharing the AND and XOR gates used in the PN
generation. The resulting 4 bits can then be interpreted as
the 4-bit values of the Walsh code at the specified row and
column. In addition, OVSF codes can be generated in the
same fashion as well.

3.2 Correlator Unit

The correlator unit performs a complex-conjugate
multiplication of 4 complex input samples and the 4
complex despreading code samples generated by the code
generator unit. Besides the data samples and the
despreading codes, the correlator has one more input
operand. This input operand is a complex value, supplied
by the register file, to which the complex correlation value is
coherently added. The resulting complex sum is written
back to the register file. In cases where it is desirable to
correlate less than 4 samples per cycle, a multiplexer gives
an option of correlating a single data point. Such option is
useful for correlating data samples of length that is a non-
integer multiples of 4 (i.e. Barker series of 802.11b).
 The correlator is supported by a flexible input memory
to simultaneously supply the correlator with 4 data samples
per clock cycle. The input memory is composed of 4
separate banks of 16-bit wide and 2K words deep memory.
The 4 separate banks allow 4 data samples to be read out
simultaneously, one from each bank per clock cycle. To
support such operation, it is important to deposit the
incoming data into the 4 separate banks such that each
desired samples (samples separated by interval of one chip,
used in correlation) reside in different memory banks. The
memory controller unit simply increments the write address
of the input memory by one every time a new sample is
received from the ADC. The intelligence lies in the
interpretation of the write address such that the input
samples will be deposited in the appropriate banks.

For instance, if the samples are sampled at twice the
chip rate, the second and the third LSBs will be used to

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

select the bank of the memory. The remaining bits of the
address will be used as the new effective address into the
selected memory bank. For example, binary address of
000001 will be mapped to physical address 1 of memory
bank 0, while binary address of 000010 will be mapped to
physical address 0 of bank 1. The purpose of this address
remapping is to deposit samples separated by one chip
interval into different banks of the memory, so that they can
be accessed simultaneously. This memory access mechanism
allows the CRP to perform 4-chip correlations in one clock
cycle. There is a crossbar network dedicated to rotating the
data samples from the 4 banks to a correct order before
relaying them to the correlator unit. The CRP currently
supports oversampling factors of ×2, ×4, ×8, ×16, and ×32.

3.3 Other Blocks

The last remaining processing unit of the CRP is a general-
purpose ALU capable of 40-bit complex or real operations.
Examples of the operations include additions, subtractions,
multiplication, logic operations, shifts, and magnitude
calculation. The general-purpose ALU is also responsible
for setting the zero flag, carry flag, and the negative flag,
according to the results of the operation. The flags are then
be used by the branch unit to branch conditionally. The
branch unit operates completely independently of the three
processing units. Therefore it is possible to perform an
operation and a branch simultaneously in a VLIW fashion.

4. SOFTWARE ARCHITECTURE: AN
IS95/CDMA2000 EXAMPLE

This section will demonstrate the software implementation
of rake receiver on the CRP targeting IS95/CDMA2000 as
an example.

4.1 Development Tools

Several tools were developed to facilitate the software
development on the CRP. The hardware and software co-
development flow is illustrated in Figure 4. The tool
programs are denoted in shaded boxes, including the
commercial Verilog simulator. The software source code is
developed using CRP’s own assembly language. Next an in-
house developed linter program will check for illegal code
sequences, and an assembler tool will generate the machine
code for simulation. The Verilog HDL simulator simulates
the CRP hardware and software together, and produces
results for post processing and statistical analysis.

4.2 Software Rake Receiver for IS95/CDMA2000

The IS95 standard and the CDMA2000 (single carrier)
standard have a lot of similarities. One of the main

differences between them is that CDMA2000 supports more
than one spreading factor on the data channel. The intention
is to demonstrate one piece of software that can support both
systems.

The software implementation of rake receiver for
IS95/CDMA2000 on the CRP contains the following
modules: a simple round robin task scheduler for real time
task scheduling; a message handler decodes the control
messages from control processor; several pilot correlation
tasks calculate pilot correlator results, clock recovery
correlator results, and perform channel/parameter
estimation; and several data correlation tasks calculate data
correlator results and perform MRC. The number of rake
branches utilized determines the number of pilot correlation
tasks; the number of data channels allocated determines the
number of data correlation tasks. This software example of
rake receiver includes the implementation of both chip rate
processing and symbol rate processing on the CRP, although
the symbol rate processing is more suitable for DSP
implementation.

4.3 Rake Receiver Implementation on the CRP

The fundamental operations involved in performing chip
rate processing are, to generate despreading sequences and
correlate them with the appropriate samples in the input
buffer. The correlation results will then be accumulated for a
certain period before used by symbol rate processing. This
operation can be implemented using the basic routine shown
in Figure 5. The first three instructions will set up the
hardware loop. Inside the loop there are one multiple PN
generation instruction (MPNgen), one multiple Walsh
generation instruction (Mwalsh), one add instruction to set
up next Walsh generation, and one parallel correlate and
accumulate instruction (McorAcc). This basic routine varies
slightly between pilot correlation tasks and data correlation
tasks. In pilot correlation, there is no need to generate user
specific Walsh codes. In data correlation, the same codes
need to be correlated with different multipath components,
therefore more than one correlate and accumulate operations
are performed. Another more straightforward approach is to
dedicate one task for each multipath component, while
performing both the pilot correlation and data correlation for
this multipath altogether. The drawback of this architecture
is: if there are more than one code channel to be
demodulated and they have different spreading factors, it is
more difficult to utilize the hardware looping effectively.

It is assumed that multipath search results are already
available to distinguish different multipath components. The
task scheduler and the message handler are responsible for
updating the correlation tasks. Each correlation task has,
among other parameters, one parameter to indicate its time
to execute. The real time information is derived from a
special peripheral to the CRP: a sample counter tracking the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

number of ADC inputs dumped into the receive sample
buffer. The control processor is responsible for interpreting
the search results and extrapolating these key parameters to
set up correlation tasks appropriately: the start pointer in the
data buffer where the correlation starts; the PN generator
state matching the start sample; the end pointer in the data
buffer where the correlation ends; the number of user code
channels and their Walsh indexes.

Figure 6 shows an example of the execution of three
pilot correlation tasks and one data correlation task based on
the search results. Since the software routine for each
correlation task requires the overhead of parameter passing,
it is desirable to execute these tasks at a reasonably long
interval. Such batch processing allows the real time
execution of correlation tasks. In this example, the interval
between the consecutive executions of pilot correlation is set
to be 64 chips. For data correlation with spreading factors
fewer than 64 chips, the routine will calculate more than one
correlation output in each task. In Figure 6 there are three
multipaths with different delays. Once the search results are
available, it should be easy to calculate the convenient time
when the correlation tasks should start, i.e., t1, t2 and t3.
These time instants correspond to the received samples from
different multipath components that the correlation will use.
This figure interchangeably uses sample buffer pointer and
real time instants, since they essentially contain the same
information. By adding the task execution interval to the
start time, the “time to run” parameter of the correlation task
for each multipath component, i.e., t4, t5 and t6, can also be
extracted. Inside each correlation task, it compares the
current time with its “time to run” parameter and determines
whether the correlation should proceed. The start time of the
data correlation tasks should coincide with the symbol
boundary to assure the correct calculation of data correlation
results. In this example, the start time of the pilot correlation
tasks, for the sake of convenience, falls on the symbol
boundary as well. There the “time to run” parameter of the
data correlation task will be the same as the “time to run”
parameter of the pilot correlation task for the latest arriving
multipath component, i.e., t6, as shown in Figure 6. This
implementation implicitly adjusts the delay among different
multipath components at the chip rate input buffer, rather
than at the symbol rate output buffer depicted in Figure 1.

The described implementation of rake receiver
algorithms on the CRP is motivated by the modularity
concerns about multicode reception. The pilot correlation
tasks can be added for each active multipath component;
while for each user code channel, one data correlation task
will be allocated to it. Table 1 shows some statistics for
these correlation routines and their equivalent processor
loading assuming the CRP is running at 150 MHz. The
equivalent million cycles per second (Mcps) number is
calculated by using the IS95 chip rate of 1.2288 million chip
per second and the correlation tasks are scheduled to execute

every 64 chips. Most symbol rate processing operations
shown in Figure 1 are also included in this statistics.

Task Name Clock

Cycles
Number of

Tasks
Equivalent

Mcps
Processor
Loading

pilot correlation 208 6 24 16%

data correlation
(SF=64)

444 1 8.52 5.7%

data correlation
(SF=32)

578 1 11.10 7.4%

data correlation
(SF=16)

846 1 16.24 10.8%

Table 1 Statistics of CRP's rake receiver implementation

5. CONCLUSIONS

This paper presented a flexible processor suitable of
implementing rake receiver algorithms using software. All
the multipath components share the centralized processing
units instead of having their own functional blocks. The
proposed code generator can support various CDMA
standards. The parallel correlation unit and the flexible input
queue increased the correlation throughput. The software
architecture to implement the rake receiver on the CRP is
presented as well; the modular architecture offers easy
scalability. The processor loading numbers are also
presented for the described IS95/CDMA2000 software
example. The results demonstrate that the CRP architecture
is suitable for rake receiver implementation using software-
defined approaches.

6. REFERENCES

[1] J.H. Reed, Software Radio: A Modern Approach to Radio

Engineering, Prentice Hall PTR, New Jersey, 2002
[2] L. Harju, M. Kuulusa, J. Nurimi, “Flexible Implementation of

A WCDMA Rake Receiver”, in Proc. of SIPS 2002, pp.177-
182, Oct. 2002

[3] S. Lee, J. Kim, “VLSI Architecture of Rake Receivers for
cdma2000 Systems”, in Proc. of SIPS 2002, pp. 183-188,
Oct. 2002

[4] A.J. Viterbi, CDMA: Principles of Spread Spectrum
Communication, Addison-Wesley, Massachusetts, 1998

[5] R.L. Perterson, R.E. Ziemer, D.E. Borth, Introduction to
Spread Spectrum Communications, Prentice Hall, New
Jersey, 1995

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Code
generator

Channel
Estimation

Delay
adjustment

Pilot
correlator

output

data
correlator

output

Delay/
advance Clock

recovery

Timing
adjustment

Parameter
Estimation

clock
correlator

output

RX samples

Rake branch
Rake branch

Rake branch

Chip rate processing Symbol rate processing

Multipath Search

parameter

data

Figure 1 Rake receiver functional diagram

Register File
1 write port
2 read ports

Input Memory
4 word output

Code
Generator

Unit

PN
Bit

Flags
Correlator Unit GP ALU

Instruction
Memory

Instruction
Decode

Operand
Memory

Branch
Unit /

Program
Control

Memory
Control

Input Data

A B

A B

Memory Data
Memory Address

accum data
4
bit

state mask

1±

Figure 2 Architecture block diagram of CRP

AND
AND

AND
AND

AND
AND

AND
MOD2
SUM

4-bit
carry

4-bit
Accumlator

XOR

Output Mux

Updated
State

PNFlags

Shift Reg

mask state
4 MSBs

stateShift
Reg

Figure 3 Code generation unit datapath

SW Source
.ucasm

uLint
Checker

Ucasm
Assembler .txt Verilog

Simulator

HW Source
.v

Stat.txt
debug.txt

Statistics
analyzer

Debug
analyzer

Figure 4 Hardware/software development tools of CRP

DoStart0 CorStart;
DoEnd0 CorEnd;
DoEn0 CorCnt; -- setup loop
CorStart:

MPNgen Pnmask, Pnstate, Pnstate; -- generate 4 PN chips
Mwalsh.c WalshIndex, WalshCol, Temp; -- generate 4 walsh bits
Add WalshCol, #4, WalshCol; -- next walsh bits
McorAcc A1, Cor, Cor; -- correlate and accumulate

CorEnd:

Figure 5 Example correlation routine implemented using
CRP assembly code

Receive
sample
buffer

timet1 t2 t3 t4 t5 t6

t1: time when 1st sample in multipath 1 arrives
t2: time when 1st sample in multipath 2 arrives
t3: time when 1st sample in multipath 3 arrives

Multipath 1
Multipath 2

Multipath 3

t4: time when multipath 1 pilot correlation is ready
t5: time when multipath 2 pilot correlation is ready
t6: time when multipath 3 pilot correlation is ready
t6: time when data correlation is ready

64 chips

Figure 6 Real time execution of correlation tasks on CRP

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

