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ABSTRACT 
 
This paper presents a chip rate processor suitable for 
software implementation of rake receiver for CDMA. The 
implementation is based on a novel code generator, a 
parallel correlator, and the traditional processor architecture. 
The code generator is capable of generating the dispreading 
codes for various CDMA systems. The correlator unit 
performs parallel correlation between the received samples 
and the generated codes. The processor allows the 
algorithms of rake receiver for different CDMA standards to 
be realized using different software on the same hardware. A 
scalable software approach to implement rake receiver 
algorithms on this processor is also presented. The processor 
is implemented using synthesizable Verilog HDL 
description.  
 

1. INTRODUCTION 
 
The software definable radio (SDR) advocates more flexible 
or “soft” approaches to implement key physical layer signal 
processing algorithms for radios. A good working definition 
of software radio is a radio that is substantially defined in 
software and whose physical layer behavior can be 
significantly altered through changes to its software [1]. One 
particular radio standard, CDMA based standard, has gained 
a lot of popularity since its initial commercialization in the 
1990’s. Currently there exist many standards within CDMA 
framework, for example, IS-95, CDMA2000, and WCDMA. 
It will be desirable that multimode operations for these 
CDMA standards can be achieved by software change 
without relying on multiple sets of hardware.  

The availability of high speed digital signal processors 
(DSP) has made it possible to implement more and more of 
radio’s physical layer processing in software. But the chip 
rate processing for rake receiver, which is an integral part in 
CDMA baseband processing, is still most likely carried out 
by dedicated hardware or ASIC. These ASICs are generally 
not designed to be flexible enough to perform multimode 
operations. Flexible architectures of rake receiver have been 
discussed in recent publications [2] and [3], but these 

architectures still lack the real software upgrade-ability that 
defines software radio.  

Rake receiver is used in CDMA baseband processing to 
take advantage of multipath diversity. This is one of the 
most important capacity improvement features of CDMA 
systems [2]. This paper presents a novel approach to 
implement rake receiver algorithms for different CDMA 
standards on a common processor, chip rate processor 
(CRP). The CRP performs parallel generation of the 
despreading codes, and parallel correlation between the 
received samples and the generated codes. The flexible code 
generator can generate the despreading codes for various 
known CDMA systems. The algorithms of rake receiver can 
be implemented on the CRP using modular software 
architecture. 

This paper is organized as follows. First the 
functionalities of rake receiver are introduced in general. 
Then the hardware architecture of the CRP is discussed in 
more detail. In the next section, the software architecture for 
an IS-95/CDMA2000 system is discussed. Finally, 
simulation results are presented and conclusions are drawn.  
 

2. RAKE RECEIVER 
 
Due to multipath propagation, the transmitted signal is 
replicated several times when arriving at the receiver in 
wireless systems. Each path arrives with different amplitude 
and time delay. A rake receiver separates the different 
multipath components and forms the weighted, phase 
adjusted, and delay adjusted sum of these multipath 
components [4]. A functional block diagram of rake receiver 
with three rake branches is depicted in Figure 1. The number 
of rake branches determines the number of multipath 
components that can be exploited to combine their energy. 

Typically, rake branches are assigned to distinct 
multipath components according to multipath search results. 
These components have different energy, carrier phase, and 
are delayed in time relative to one another. The processing 
involved in a rake branch can be divided into two categories: 
chip rate processing and symbol rate processing. The chip 
rate processing block performs the front-end despreading 
and correlation functions. The input to this block is the 
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digitized baseband complex signal. First, the rake branch 
generates the appropriate despreading sequences needed to 
remove the spreading sequences imposed at the transmitter 
side. Then the despreaded pilot samples and data samples 
are accumulated over certain period to produce pilot symbol 
and data symbol correlator outputs. These outputs are 
further used by symbol rate processing blocks to perform the 
other essential functions of rake receiver: channel 
estimation, frequency offset estimation, data symbol 
recovery, etc. Data symbol recovery process employs 
coherent detection to calculate weighted and delay adjusted 
sum from several multipath components, also known as 
Maximum Ratio Combining (MRC). MRC requires an 
estimate of the transmission channel of each multipath. This 
estimate is much more precise if performed on an 
unmodulated signal, or the pilot signal in a typical CDMA 
system. That is why rake branch involves correlations for 
both pilot channel and data channels. More correlations are 
performed on the pilot channel as well in order to track the 
timing difference between receiver and transmitter. The de-
skew processing adjusts the delay among different multipath 
components before the MRC is performed. 

Data rates involved in symbol rate processing are lower 
compared to that involved in chip rate processing. In 
addition, the symbol rate processing also requires a fair 
amount of mathematical functions such as conjugate 
multiplication, multiply and accumulate, etc. Therefore the 
symbol rate processing is more suitable to be carried out on 
DSPs. On the other hand, the chip rate processing involves 
relatively simpler, higher data rate, and shorter word-length 
processing tasks, thus making it more desirable to be 
implemented on ASICs. These ASICs are less flexible 
although they traditionally have higher performance and less 
power consumption. Some vendors have started to 
emphasize the flexibility of their solutions to support 
multimode operations of radio. The CRP is also intended to 
be an evolving SDR replacement of dedicated ASIC to 
perform chip rate processing. 
 

3. HARDWARE ARCHITECTURE 
 
The CRP is a standalone processor consisting of an 
instruction-decode unit, a branching unit, and three 
processing units.  In addition, the processor has three 
memory instances, one for the instructions (instruction 
memory), one for the operands (operand memory), and 
another for the input data samples to the CRP (input 
memory).  A memory control unit generates and arbitrates 
addresses and control signals to all of these memory 
instances. The three processing units in the CRP are: the 
code generator unit, the correlator unit, and the general-
purpose ALU unit.  The centralized register file provides 
operands to the three processing units, while the operand 
memory serves as storage for various purposes. Figure 2 

illustrates the major blocks of the CRP and the inter 
connections among these blocks. 

The code generator unit is designed to generate the 
despreading codes used by a variety of CDMA standards.  It 
is capable of generating the pseudo-random noise (PN) 
sequences for CDMA2000, WCDMA, GPS, and several 
other periodic codes. The correlator unit is used to correlate 
the input data with the despreading codes and provide a 
complex correlation sum.  The correlation sum can then be 
accumulated with a previous sum to calculate the correlator 
output in the rake receiver. The general-purpose ALU unit is 
responsible for performing miscellaneous arithmetic 
operations such as addition, subtraction, multiplication, etc. 
The general-purpose ALU will also set the flags that control 
the subsequent conditional branching instructions, which 
allows complex program flow.  Most of the datapaths in the 
CRP are complex, reflecting the I/Q inputs used in baseband 
digital receiver. However, some of the operations in the 
general-purpose ALU unit can revert back to a non-complex 
mode when needed.  
 The register file provides 40-bit complex operands and 
a storage place for the three processing units of the CRP.  It 
is composed of two read ports and one write port to 
accommodate single cycle operation.  Movement of data 
between the register file and the operand memory is 
achieved through the memory controller unit. The input 
memory is a single write, single read memory composed of 4 
banks of memory.  Only the analog to digital converters 
(ADC) can write into the input memory, and the CRP can 
then control the read behavior of the input memory as 
dictated by the programming.  The operand memory is a 
single port memory primarily used as long-term storage of 
variables.  The instruction memory is for the storage of the 
instructions of the CRP.  Once loaded, the instructions are 
fetched in sequence and decoded by the instruction decode 
unit for appropriate interpretation. 
 The CRP is capable of performing branches using its 
own branch unit.  The branching operations can be either 
unconditional branches or conditional branches.  The 
assembly code for the CRP supports programmer hints for 
predictive branching in order to reduce the number of stalled 
cycles.  Hardware loops are supported for zero overhead 
loop structures in the CRP.  Furthermore, up to 4 loops can 
be nested creating a potential for very complex program 
flow. 

The flexibility of the CRP lies mostly in the code 
generator unit and the correlator unit. 
  
3.1 Code Generator Unit 
 
The code generator is capable of generating 4 consecutive 
bits of various spreading codes in one clock cycle.  In 
particular, the unit is optimized to generate codes that are 
specified using linear feedback shift registers (LFSR) as 
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required by modern CDMA standards; however, the unit is 
not limited to such codes.  Figure 3 is a coarse block 
diagram of the 20-bit code generator in the code generator 
unit.  The code generator is actually composed of two such 
processing units, one for the imaginary part and the other for 
the real part.  The description of the code generator from 
hereon will focus on the operation of this 20-bit code 
generator. 

The code generator employs Fibonacci configuration of 
the LFSR to generate PN sequences [5]. In this paper, the 
contents of the shift register are referred as the state, and the 
feedback tap weights are referred as the mask. The state and 
the mask are the two fundamental input operands to the code 
generator. The two values are bitwise ANDed by 20 AND 
gates, and XOR reduced to a single bit.  In a typical single 
bit PN generator, this resulting bit will be shifted into the 
LSB of the LFSR. However in the CRP’s code generator, a 
temporary “next state” is created using the shifting 
operation. The new resulting state value is once again 
bitwise ANDed with the original mask and XOR reduced to 
create another resulting bit.  The process is repeated two 
more times until 4 consecutive PN bits are generated.  The 4 
generated bits are presented to the holding register called 
PNflags to be used by the correlator unit.  Meanwhile, the 
updated state, with the 4 new values shifted in the LSBs of 
the state are written back into the register to be used in 
future PN generation routines.  

Additional hardware blocks are also included in the 
code generation unit for more flexibility.  The first block of 
such hardware is a 20-bit shift register.  The shift register is 
used to build a complete 20-bit state value.  The new state 
value is assembled 4-bits per clock cycle into the shift 
register.  When the 20-bit state is complete, the result can 
then be stored in the register file.  This is a convenient 
means of combining the results from the 5 previous code 
generations into a single 20-bit result.  The mechanism is 
useful when generating a future state value for a quick jump 
in PN sequence cycle (e.g. jumping ahead by 20,000 PN 
bits). 

The second additional hardware is a 4-bit accumulator.  
The accumulator is used to modify the current LFSR code 
by other LFSR codes or a constant.   The accumulator 
provides a convenient temporary 4-bit storage where a code 
can be XORed with other codes. For instance, generation of 
Gold codes can be accomplished using the accumulator.  
The first set of LFSR PNs can be stored in the 4-bit 
accumulator.  Then, the second set of LFSR PNs can be 
generated and XORed with the 4-bit accumulator resulting 
in 4 consecutive bits of Gold code.  

Another additional hardware is the 4-bit carry register.  
Basically, the carry register provides storage for 4 MSBs of 
the previous state (operand).  At the output stage of the code 
generator unit, where the state value is written back to the 
register file, a multiplexer selects either the carry register or 

the generated PN code to be fed into the 4 LSBs of the 
outgoing state. This is the mechanism by which the state 
information from previous operation can be passed on to the 
next operation. Such operation is useful when dealing with 
LFSR of greater than 20-bits in length.  Theoretically, the 
code generator is capable of generating any length LFSR by 
computing 20-bit segments of the LFSR per clock cycle; 
however, generation of codes specified by longer LFSR 
would consume more cycles. 

Walsh code generation is also possible on the code 
generation unit of the CRP.  Walsh code generation is not a 
complex operation, therefore both the real and imaginary 
code generators can be used to generate two sets of 
independent Walsh codes.  Generation of Walsh code begins 
with the column address and row address as operands to the 
code generator unit.  It requires some extra decode logic 
besides sharing the AND and XOR gates used in the PN 
generation. The resulting 4 bits can then be interpreted as 
the 4-bit values of the Walsh code at the specified row and 
column. In addition, OVSF codes can be generated in the 
same fashion as well. 
 
3.2 Correlator Unit 
 
The correlator unit performs a complex-conjugate 
multiplication of 4 complex input samples and the 4 
complex despreading code samples generated by the code 
generator unit.  Besides the data samples and the 
despreading codes, the correlator has one more input 
operand.  This input operand is a complex value, supplied 
by the register file, to which the complex correlation value is 
coherently added.  The resulting complex sum is written 
back to the register file.  In cases where it is desirable to 
correlate less than 4 samples per cycle, a multiplexer gives 
an option of correlating a single data point.  Such option is 
useful for correlating data samples of length that is a non-
integer multiples of 4 (i.e. Barker series of 802.11b). 
 The correlator is supported by a flexible input memory 
to simultaneously supply the correlator with 4 data samples 
per clock cycle.  The input memory is composed of 4 
separate banks of 16-bit wide and 2K words deep memory.  
The 4 separate banks allow 4 data samples to be read out 
simultaneously, one from each bank per clock cycle.  To 
support such operation, it is important to deposit the 
incoming data into the 4 separate banks such that each 
desired samples (samples separated by interval of one chip, 
used in correlation) reside in different memory banks.  The 
memory controller unit simply increments the write address 
of the input memory by one every time a new sample is 
received from the ADC.  The intelligence lies in the 
interpretation of the write address such that the input 
samples will be deposited in the appropriate banks. 

For instance, if the samples are sampled at twice the 
chip rate, the second and the third LSBs will be used to 
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select the bank of the memory.  The remaining bits of the 
address will be used as the new effective address into the 
selected memory bank.  For example, binary address of 
000001 will be mapped to physical address 1 of memory 
bank 0, while binary address of 000010 will be mapped to 
physical address 0 of bank 1.  The purpose of this address 
remapping is to deposit samples separated by one chip 
interval into different banks of the memory, so that they can 
be accessed simultaneously. This memory access mechanism 
allows the CRP to perform 4-chip correlations in one clock 
cycle. There is a crossbar network dedicated to rotating the 
data samples from the 4 banks to a correct order before 
relaying them to the correlator unit.  The CRP currently 
supports oversampling factors of ×2, ×4, ×8, ×16, and ×32.  
 
3.3 Other Blocks 
 
The last remaining processing unit of the CRP is a general-
purpose ALU capable of 40-bit complex or real operations.  
Examples of the operations include additions, subtractions, 
multiplication, logic operations, shifts, and magnitude 
calculation.  The general-purpose ALU is also responsible 
for setting the zero flag, carry flag, and the negative flag, 
according to the results of the operation.  The flags are then 
be used by the branch unit to branch conditionally. The 
branch unit operates completely independently of the three 
processing units.  Therefore it is possible to perform an 
operation and a branch simultaneously in a VLIW fashion.  
 

4. SOFTWARE ARCHITECTURE: AN 
IS95/CDMA2000 EXAMPLE 

 
This section will demonstrate the software implementation 
of rake receiver on the CRP targeting IS95/CDMA2000 as 
an example. 
 
4.1 Development Tools 
 
Several tools were developed to facilitate the software 
development on the CRP. The hardware and software co-
development flow is illustrated in Figure 4. The tool 
programs are denoted in shaded boxes, including the 
commercial Verilog simulator. The software source code is 
developed using CRP’s own assembly language. Next an in-
house developed linter program will check for illegal code 
sequences, and an assembler tool will generate the machine 
code for simulation. The Verilog HDL simulator simulates 
the CRP hardware and software together, and produces 
results for post processing and statistical analysis. 
 
4.2 Software Rake Receiver for IS95/CDMA2000 
 
The IS95 standard and the CDMA2000 (single carrier) 
standard have a lot of similarities. One of the main 

differences between them is that CDMA2000 supports more 
than one spreading factor on the data channel. The intention 
is to demonstrate one piece of software that can support both 
systems. 

The software implementation of rake receiver for 
IS95/CDMA2000 on the CRP contains the following 
modules: a simple round robin task scheduler for real time 
task scheduling; a message handler decodes the control 
messages from control processor; several pilot correlation 
tasks calculate pilot correlator results, clock recovery 
correlator results, and perform channel/parameter 
estimation; and several data correlation tasks calculate data 
correlator results and perform MRC. The number of rake 
branches utilized determines the number of pilot correlation 
tasks; the number of data channels allocated determines the 
number of data correlation tasks. This software example of 
rake receiver includes the implementation of both chip rate 
processing and symbol rate processing on the CRP, although 
the symbol rate processing is more suitable for DSP 
implementation.  
 
4.3 Rake Receiver Implementation on the CRP 
 
The fundamental operations involved in performing chip 
rate processing are, to generate despreading sequences and 
correlate them with the appropriate samples in the input 
buffer. The correlation results will then be accumulated for a 
certain period before used by symbol rate processing. This 
operation can be implemented using the basic routine shown 
in Figure 5. The first three instructions will set up the 
hardware loop. Inside the loop there are one multiple PN 
generation instruction (MPNgen), one multiple Walsh 
generation instruction (Mwalsh), one add instruction to set 
up next Walsh generation, and one parallel correlate and 
accumulate instruction (McorAcc). This basic routine varies 
slightly between pilot correlation tasks and data correlation 
tasks. In pilot correlation, there is no need to generate user 
specific Walsh codes. In data correlation, the same codes 
need to be correlated with different multipath components, 
therefore more than one correlate and accumulate operations 
are performed. Another more straightforward approach is to 
dedicate one task for each multipath component, while 
performing both the pilot correlation and data correlation for 
this multipath altogether. The drawback of this architecture 
is: if there are more than one code channel to be 
demodulated and they have different spreading factors, it is 
more difficult to utilize the hardware looping effectively. 

It is assumed that multipath search results are already 
available to distinguish different multipath components. The 
task scheduler and the message handler are responsible for 
updating the correlation tasks. Each correlation task has, 
among other parameters, one parameter to indicate its time 
to execute. The real time information is derived from a 
special peripheral to the CRP: a sample counter tracking the 
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number of ADC inputs dumped into the receive sample 
buffer. The control processor is responsible for interpreting 
the search results and extrapolating these key parameters to 
set up correlation tasks appropriately: the start pointer in the 
data buffer where the correlation starts; the PN generator 
state matching the start sample; the end pointer in the data 
buffer where the correlation ends; the number of user code 
channels and their Walsh indexes. 

Figure 6 shows an example of the execution of three 
pilot correlation tasks and one data correlation task based on 
the search results. Since the software routine for each 
correlation task requires the overhead of parameter passing, 
it is desirable to execute these tasks at a reasonably long 
interval. Such batch processing allows the real time 
execution of correlation tasks. In this example, the interval 
between the consecutive executions of pilot correlation is set 
to be 64 chips. For data correlation with spreading factors 
fewer than 64 chips, the routine will calculate more than one 
correlation output in each task. In Figure 6 there are three 
multipaths with different delays. Once the search results are 
available, it should be easy to calculate the convenient time 
when the correlation tasks should start, i.e., t1, t2 and t3. 
These time instants correspond to the received samples from 
different multipath components that the correlation will use. 
This figure interchangeably uses sample buffer pointer and 
real time instants, since they essentially contain the same 
information.  By adding the task execution interval to the 
start time, the “time to run” parameter of the correlation task 
for each multipath component, i.e., t4, t5 and t6, can also be 
extracted. Inside each correlation task, it compares the 
current time with its “time to run” parameter and determines 
whether the correlation should proceed. The start time of the 
data correlation tasks should coincide with the symbol 
boundary to assure the correct calculation of data correlation 
results. In this example, the start time of the pilot correlation 
tasks, for the sake of convenience, falls on the symbol 
boundary as well. There the “time to run” parameter of the 
data correlation task will be the same as the “time to run” 
parameter of the pilot correlation task for the latest arriving 
multipath component, i.e., t6, as shown in Figure 6. This 
implementation implicitly adjusts the delay among different 
multipath components at the chip rate input buffer, rather 
than at the symbol rate output buffer depicted in Figure 1. 

The described implementation of rake receiver 
algorithms on the CRP is motivated by the modularity 
concerns about multicode reception. The pilot correlation 
tasks can be added for each active multipath component; 
while for each user code channel, one data correlation task 
will be allocated to it. Table 1 shows some statistics for 
these correlation routines and their equivalent processor 
loading assuming the CRP is running at 150 MHz. The 
equivalent million cycles per second (Mcps) number is 
calculated by using the IS95 chip rate of 1.2288 million chip 
per second and the correlation tasks are scheduled to execute 

every 64 chips. Most symbol rate processing operations 
shown in Figure 1 are also included in this statistics. 

 
Task Name Clock 

Cycles 
Number of 

Tasks 
Equivalent 

Mcps 
Processor 
Loading 

pilot correlation 208 6 24 16% 

data correlation  
(SF=64) 

444 1 8.52 5.7% 

data correlation 
(SF=32) 

578 1 11.10 7.4% 

data correlation  
(SF=16) 

846 1 16.24 10.8% 

Table 1 Statistics of CRP's rake receiver implementation 

 
5. CONCLUSIONS 

 
This paper presented a flexible processor suitable of 
implementing rake receiver algorithms using software. All 
the multipath components share the centralized processing 
units instead of having their own functional blocks. The 
proposed code generator can support various CDMA 
standards. The parallel correlation unit and the flexible input 
queue increased the correlation throughput. The software 
architecture to implement the rake receiver on the CRP is 
presented as well; the modular architecture offers easy 
scalability. The processor loading numbers are also 
presented for the described IS95/CDMA2000 software 
example. The results demonstrate that the CRP architecture 
is suitable for rake receiver implementation using software-
defined approaches. 
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Figure 1 Rake receiver functional diagram 
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Figure 2 Architecture block diagram of CRP 
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Figure 3 Code generation unit datapath 
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Figure 4 Hardware/software development tools of CRP 

DoStart0 CorStart;
DoEnd0 CorEnd;
DoEn0 CorCnt;      -- setup loop
CorStart:

MPNgen Pnmask, Pnstate, Pnstate;  -- generate 4 PN chips
Mwalsh.c WalshIndex, WalshCol, Temp; -- generate 4 walsh bits
Add WalshCol, #4, WalshCol; -- next walsh bits
McorAcc A1, Cor, Cor; -- correlate and accumulate

CorEnd:

 

Figure 5 Example correlation routine implemented using 
CRP assembly code 
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Figure 6 Real time execution of correlation tasks on CRP 
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