
DESIGN OF AN SDR BASED RAKE RECEIVER

Craig Dolwin (Toshiba Research Europe Limited, Bristol, UK;
craig.dolwin@toshiba-trel.com)

ABSTRACT
This paper presents a design study for a flexible rake
receiver using techniques and concepts suitable for a
Software Defined Radio (SDR). This specific design
combines software and hardware accelerators to create a
basic rake receiver that could potentially support multiple
standards (e.g. WCDMA, cdma2000) as well as allowing
high level configuration software to trade resources to
match a dynamically changing propagation channel.
By encapsulating both software and hardware functions
using Real Time Operating System (RTOS) tasks and
channels as well as developing a common message based
control interface we have demonstrated how components in
SDR can be controlled and linked independent of the
underlying physical architecture. Furthermore to evaluate
the effect on power consumption we have analysed the
increase in overhead due to the additional control code

1. INTRODUCTION

1.1. Motivation

In the last fifteen years the mobile phone has continuously
evolved. This evolution has been driven by a demand for
improved spectral efficiency, higher quality audio, extra
services and increased flexibility. Each time the wireless
terminal went through another stage of evolution the
hardware and software associated with the signal
processing stage had to undergo a substantial redesign [1].
This continuous redesign of the signal processing stages is
particularly difficult due to its direct impact on power
consumption and tight timing constraints. This has resulted
in a slow and expensive development cycle. To address this
problem researchers are currently looking at software and
hardware architectures that support dynamic
reconfiguration to provide multiple implementations [2].
This type of system is known as Software Defined Radio
(SDR). The primary issue that we must address when
proposing an architecture for SDR is the power
consumption. It is clear that for SDR to be successful it
must operate at equivalent or lower power consumption
levels when compared against its non-reconfigurable
predecessor.

1.2. Background

This paper describes the real time implementation of a
flexible rake receiver. The rake receiver is a key component
in a Code Division Multiple Access (CDMA) receiver and
has traditionally been implemented in hardware. An all
software solution is possible [3][4][5] and potentially offers
the maximum flexibility but requires the processor and data
bus to operate at higher clock frequencies than a hardware
solution that can use multiple processing elements and
interconnects. A circuit running at higher clock frequency
will have to operate at a higher supply voltage and will
therefore have higher power consumption [6]. In addition
the amount of MIPS required to implement all the
processing at the IQ sample level is well beyond current
technology [7]. So in this design we have used a
combination of software and hardware to try and achieve
the flexibility of software while maintaining the low power
consumption of a hardware solution. The rake receiver was
chosen because it was seen as a complex real-time problem
that could benefit from the extra flexibility offered by
applying the ideas and concepts associated with SDR. By
analysing a system that has complex real-time interactions
between hardware and software modules we hope to gain
significant insight into future SDR design issues.

1.3. Software Defined Radio

At its most flexible, Software Defined Radio will allow a
processing module to be downloaded into the terminal via
the wireless link and then integrated into the rest of the
system. Typically these modules might be a complete
receiver chain or elements of the transceiver (e.g. an
improved channel decoder). As might be expected these
modules will be made up of both software and hardware. In
a system that supports reconfigurable logic the hardware
configuration may also be downloaded.

One of the key challenges for implementing SDR will be
how to integrate a new module into the rest of the system. It
is made especially difficult because it cannot be assumed
that the combination of modules can have been anticipated.
This problem is similar to that of applications running on a
Personal Computer except in the case of SDR the
performance of each module must be guaranteed. This

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

timing deadlines [8] otherwise data may be lost or the
complete system may crash. In addition, and equally
importantly, the implementation must also be very power
efficient.

2. OVERVIEW

By using an object orientated approach to analyse the rake
receiver we isolated a number of objects that had clear
boundaries and shared very little common data. The
processing requirements for each of these objects were then
analysed to see if they would be best implemented in
hardware or software. This analysis required a trade-off
between flexibility and power consumption so this involved
a certain amount of speculative design work to evaluate the
difference in complexity between the hardware and
software solution. The result of this work was to split the
system so all the chip level processing was done in
hardware and the symbol level processing was done in
software. In practice this meant that the software processed
blocks of symbols rather than symbol by symbol as this
reduced the overhead due to interrupt service routines.

The hardware is split into the following modules (Figure 1)

§ Scrambling code generator

§ Spreading code generator

§ Partial discriminator

§ Matched filter

§ Signal Conditioning

To allow maximum flexibility, each module is connected
via programmable switches.

An important aspect of SDR is the encapsulation of real-
time functions so they are isolated from the rest of the
system. In a single threaded system this is relatively easily
achieved by using function calls. The detail of how that
function is implemented is hidden by a standard interface
but such a call will only return when the operation has been
completed. So if the function was implemented using a
hardware accelerator the processor may sit idle waiting for
its completion. By allowing the system to support multiple
threads and developing a message-based command
interface we allow the processor to execute other threads
while it waits for hardware to complete. We then use
services such as pipes or channels to route data between
tasks see Figure 2 and [9].

It is anticipated that future systems [10] will include a
combination of multiple processors and hardware
accelerators so it is important that the control messages,
mailboxes and data channels work transparently across
different processors as well as between threads on a single
processor. This feature should be supported by the RTOS.

3. DESCRIPTION

In Figure 1 we show a block diagram of the complete
system but to simplify the diagram we have not shown the
multiplexing of signals between each set of blocks.

Within the rake receiver hardware there are 5 scramble
code generators, 16 Spreading code generators and 8
physical correlators. The scramble code generators can
produce an arbitrary Pseudo Noise (PN) sequence
compatible with WCDMA, cdma2000 and any other

IQ Modulation
Generator ADC M Programmable

channel filter

Matched Filter

Delay
Stage

Physical
Correlator Block

Scramble Code
Generator

Spreading

TIMER

TIMER

MIXER

Delay Stage

DMA

FIFO DMA
Combiner

Timing
Acquisition

Frame
Rate

control

DMA

DMA

x 5

x 16

x 8

HOST PC

FPGA SOFTWARE

Figure1 Simplified block diagram of the rake receiver

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

CHANNEL

CONTROL
MAILBOX

CPU

METHOD1

METHOD2

METHOD3

METHOD4

H/W

C
O

N
TR

O
L C

O
D

E

CPU

METHOD1

METHOD2

METHOD3

METHOD4

H/W

C
O

N
TR

O
L C

O
D

E

CPU

METHOD1

METHOD2

METHOD3

METHOD4

H/W

C
O

N
TR

O
L C

O
D

E

CPU

METHOD1

METHOD2

METHOD3

METHOD4

H/W

C
O

N
TR

O
L C

O
D

E

DATA
MAILBOX

INPUT DATA STREAM IS
PROCESSED BY ONE
OF THE METHODS AS
DETERMINED BY THE
CONTROL CODE
BLOCK

PROCESSOR
RESOURCE
POTENTIALLY
SHARED WITH OTHER
TASKS

HARDWARE
ACCELERATOR,
POTENTIALLY SHARED
WITH OTHER TASKS.
THIS BLOCK MAY ALSO BE
MADE UP OF RE-
PROGRAMMABLE LOGIC

EACH MAY HAVE
ONE OR MORE
METHODS FOR
PROCESSING
DATA

THE CONTROL CODE BLOCK
INTERPRETS COMMANDS FROM THE
CONTROL MAILBOX AND CONFIGURES
TASK ACCORDINGLY

CONTROL IN

A CHANNEL IS A RTOS
SERVICE WHICH
ALLOWS TASKS TO
STREAM DATA BLOCKS
BETWEEN EACH
OTHER.

THE DATA MAILBOX IS USED
FOR TASKS TO SEND SMALL
AMOUNTS OF DATA TO OTHER
TASKS

OBJECT/MODULE E.G.
COMBINER, TURBO DECODER
ETC

RTOS TASK ASSOCIATED
WITH OBJECT

CONTROL MODULE, USED TO
CONFIGURE DATA PROCESSING
MODULES VIA CONTROL MAILBOX

DATA PROCESSING MODULES,
USED FOR PROCESSING
STREAMED DATA

DATA OUT

DATA OUT

DATA OUT DATA IN

DATA IN

Figure 2, Diagram showing encapsulation of data processing modules

similar system. In addition the absolute timing of each PN
sequence can be set to an accuracy of one chip.

The spreading code generator includes a Walsh code
generator and mixing logic to combine the Walsh code and
scramble code. Each spreading code generator can select
any of the scramble code generators as its input.

The physical correlator block operates at 16 x chip rate and
implements 16 partial logical correlators. A partial
correlation is the calculation of either the real or imaginary
component of a complex correlation. A logical correlator
can select one of two spreading code generators as its input
and can be configured to take IQ samples at a timing offset
of 1/8th of the chip period. In this implementation a rake
finger is made up of a single data discriminator. A data
discriminator is physically implemented by using two
logical correlators configured to calculate the imaginary
and real component of the correlation between the selected
PN sequence and the input IQ signal. This means that a
single physical correlator can implement 8 rake fingers and
so the complete system could implement 64 fingers.

The matched filter is designed to detect the primary
Synchronisation Channel (SCH) burst in the WCDMA
synchronisation channel [11]. The timing acquisition
module uses the output from the matched filter to determine
the timing of the scramble code and spreading code
generators [12]. In many other implementations the Early-
Late Delay Locked Loop (DLL) method is used to track

paths [13] but the matched filter approach is used because it
was better suited for implementation on this platform. In
addition it also allows us to easily upgrade the system to
support adaptive algorithms. It is envisaged that these
adaptive algorithms will increase or reduce the number of
fingers depending on the type of channel environment the
terminal is working in [14].

The output from the timing acquisition module is used by
the frame rate control task to determine when the hardware
is reprogrammed. This precise timing is important to
ensure that changes in the PN phases are gradual and do
not cause glitches at the output of the combiner. The
combiner takes the complex output from each selected rake
finger and a weighting coefficient from a channel estimator
(not implemented in this design) to calculate a soft symbol
value. The output from the combiner can then be streamed
via a RTOS channel to other modules in the receive path or
on to a file on the host PC.

Figure 2 shows how RTOS services were used to
encapsulate the major functional modules within the
system. A function may be implemented in a hardware
accelerator or as a function call in the processor but by
using a RTOS task as a wrapper for the function we can
force a common interface to the rest of the system. The
wrapper must supply two types of interfaces, control and
data. The control interface is implemented using a mailbox
and a messaging scheme. A wrapper task will poll the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

mailbox after each operation to see if it has a control
message. If the task is idle it will wait until a control
message is sent. On receiving a message it will then
configure the associated hardware or call the appropriate
software function to execute the operation requested by the
message. A task maybe instructed to repeat an operation
until told to stop or may only execute the operation a fixed
number of times.

The data interface is either hardwired as in the case
between two hardware modules or can be implemented as a
RTOS channel. Using a channel gives the flexibility to
locate the modules on different processors without
modifying the wrapper or data processing function.

In this design the DSP has to support 10 threads or tasks.
To determine which task has access to the processor the
RTOS will choose the task with the highest priority from a
list of all pending tasks. The setting of individual task
priorities is done at design time and is static. Many
methods are available for assigning priorities to tasks
[15][16][8] but most of these algorithms will only
guarantee that a set of timing deadlines will be achieved
when certain constraints are met. In this design we
assigned higher priorities to task that repeat most
frequently. This is known as rate monotonic scheduling
[15]. This scheduling scheme requires that all tasks are
independent, support pre-emption and are periodic. In
addition to assigning priorities to the tasks we also had to
prioritise access to the data bus. Without this lower priority
tasks would block higher priority tasks by initiating data
transfers that could not be pre-empted. Prioritising access
to the data bus is achieved by assigning different Direct
Memory Access (DMA) channels depending on the priority
of the task requesting the data transfer. Each DMA
channel in the DSP has a different priority so higher
priority DMA transfers will pause lower priority transfers.

3.1. Cycle count

 In this design the majority of the data processing is located
in the hardware but an extra overhead in software is
required to program the hardware. This overhead is the
price we pay for being able to reconfigure the system to
meet the demands of Software Defined Radio. The control
code overhead will result in an increase in power
consumption when compared to a non-configurable system.

 In Figure 3 we show how the ratio of control code cycles to
non-idle cycles in the DSP decreases as the data rate
increases.

4. OBSERVATIONS

Many of the issues encountered during this design exercise
have been due to partitioning the rake receiver into a set of
general-purpose correlators and then trying to save silicon
by time multiplexing them on to one physical unit. This
required significant amounts of additional synchronisation
code to ensure that when changes in the PN phase were
implemented the effect of reprogramming each hardware
block did not cause a glitch in the processing of the data.

In this implementation we used a simple scheduling
scheme to determine which tasks would have access to the
DSP. The slack in the DSP made it possible to guarantee
that all tasks would meet their deadlines but it is clear that
as the system became more complicated and the available
slack in the DSP was reduced the task of the scheduler
would become significantly more difficult.

The memory requirements for our system are large
(>146Kbytes) most of this memory is associated with the
control code. Further optimization of the design could make
substantial savings, but it is clear that a software controlled
reconfigurable platforms will need much larger amounts of
control code and data memory when compared with a
specialized non-configurable solution.

The extra control code used in this design will increase the
power consumption of the baseband. The power
consumption due to the control code will increase with data
rate and receiver complexity. However because the
combiner is also done in software the ratio of control code
power dissipation to total processor dissipation will
decrease as the data processing becomes the larger element.
This suggests that a processor based SDR solution looks
more attractive at higher rather than lower data rates.

Figure 3 Control code overhead versus data rate

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

5. CONCLUSION

In this paper we have described the philosophy, principles
and design details for an SDR based rake receiver. This
work has focused on evaluating the consequences of
splitting the rake receiver into hardware and software
modules while still achieving levels of flexibility more
normally associated with a pure software solution.

The amount of control code required in this system is
clearly a limiting factor when we try to reduce power
consumption. This is especially true for low data rates when
the power consumption for the data processing is low and
we would therefore expect a proportionally low value for
the control code. Ultimately the power consumed by the
control code is limited by the architecture of the processor it
is executing on. DSPs are designed for data processing and
have long instruction pipelines that are inefficient when
executing unpredictable branches. It would therefore seem
sensible to locate the control code in a dedicated processor
and the data processing in logic or a DSP.

In this design study we have found that by attempting to
reduce the silicon area we increased the complexity of the
control code and hence, potentially, increased the power
consumption. This suggests that the optimum architecture
for a SDR terminal will require a tradeoff between power
consumption and silicon area.

One of the issues that we only briefly addressed in this
study is the problem of scheduling tasks and the resources
shared by these tasks (e.g. the data bus). It is clear that in
an SDR terminal, where the number and type of tasks will
not be known at design time, it will be difficult to devise a
generic scheduling scheme that will guarantee that tasks
will always meet their deadlines.

The component that limited the data throughput in our
system was the data bus and while its performance was
improved by using priority driven DMA schemes it was
clear that by restricting all data movements so they only
pass through a single resource we will encounter significant
problem in developing power efficient SDR solutions.

6. REFERENCES

[1] H. Blume, Hubert, H. T. Feldkamper, T. G.Noll, Model

based exploration of the design space for heterogeneous
systems on chip, ASAP’ 02, p29, July 17-19 2002

[2] Ralf E. Schuh, Peter Eneroth, Peter Karlsson, Multi-
Standard Mobile Terminlas, Telia Research AB,
Ralph.x.Schuh@telia.se

[3] Texas Instruments, Implementation of a WCDMA Rake
Receiver on a TMS320C62x. DSP Device, Application
report SPRA680, July 2000

[4] N. Zhang, C. Teuscher, H. Lee, B. Brodersen, Architectural
Implementation Issues in a Wideband Receiver Using
Multiuser Detection, University of California, Berkeley.

[5] Sridhar Rajagopal etal, Implementation of Channel
Estimation and Multiuser Detection Algorithms for WCDMA
on Digital Signal Processors, Rice University, Houston

[6] A.P. Chandrakasan, R.W. Brodersen, Minimising power
consumption in digital CMOS circuits, Proceedings of the
IEEE, Vol 83, No. 4, April 1995

[7] Hausner J, Integrated Circuits for Next Generation Wireless
Systems, Proc of ESSCIRC 2001

[8] Jackie Silcock, Swamy Kutti, Taxonomy of Real-Time
Scheduling, Deakin University, Geelong, Australia

[9] Eric Verhulst, Communication as a backbone for a well
balanced MP-SoC system design, MP-SoC Summer School,
July 2002

[10] Amer Baghdadi etal, An Efficient Architecture Model for
Systematic Design of Application-Specific Multiprocessor
SoC, DATE2001 proceedings, page 55. March 2001

[11] 3GPP, Physical channels and mapping of transport channels
onto physical channels (FDD), TS 25.211 V5.2.0 (2002-09).

[12] Benny N Vejlgaard, Preben Mogensen, Jasper Bailum
Knudsen, Grouped Rake Finger Management Principle for
Wideband CDMA, VTC, May, 1999

[13] J. S. Lee, L. E. Millar, CDMA Systems Engineering
Handbook, Artech House Publishers, 1998

[14] H. El-Sallabi, H. Bertoni, P. Vainikainen: Channel
characterization for CDMA rake receiver design for urban
environment, Proc. of ICC 2002 - 2002 IEEE International
Conference on Communications, New York, USA, 28 April −
2 May 2002, pp. 911− 915

[15] J.A. Stankovic, M. Spuri, M. Di Natale, G. Buttazzo,
Implications of Classical Scheduling Results For Real-Time
Systems, IEEE Computer, Vol. 28, No. 6, pp. 16-25, June
1995

[16] Jia Xu, David Lorge Parnas, On Satisfying Timing
Constraints in Hard-Real-Time Systems, IEEE Trans on
Software Eng, Vol. 19, No.1, January 1993

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

