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ABSTRACT 

 
This paper describes a Hardware-in-the-Loop (HIL) 
simulation capability for wired and wireless networks that 
allows Internet Protocol (IP) packets, application-layer 
information, and Distributed Interactive Simulation (DIS) 
Protocol Data Units (PDUs) to be passed between real 
nodes on an external network and their “mirrored” virtual 
mobile-nodes within a Mobile Ad hoc Network (MANET) 
simulation.  This provides a “Communications-Effects 
Server” capability for those real-nodes. The current 
applications include modeling cooperative attack by 
Unmanned Aerial Vehicles (UAVs), instrumented test-
ranges, and networks of Unattended Ground-based Sensors 
(UGS).  This HIL environment also functions as a software 
validation test-bed for Linux-based sensor-processing 
software and Joint Tactical Radio System (JTRS) compliant 
routing software. 
 

1. INTRODUCTION 
 
Simulation-based acquisition programs are starting to 
require the validation of networking protocols in Hardware-
in-the-Loop simulations that contain 10’s of real actors and 
1000’s of virtual entities.  The simulation entities should run 
the “real code” for the network layers and applications – 
since this can validate the correctness of production 
software in large networks without requiring large-scale 
field exercises.  This is a critical capability because 
“kluged-up” simulation code and the production “gold 
code” can produce significant performance differences. In 
addition, simulation code often uses shortcuts that 
complicate a subsequent port to target platforms such as 
JTRS.  
 Another issue is realistic modeling of the 
“communications effects” introduced by wireless channels 
and mobility. As an example, consider Information 
Assurance (IA) software running on UGS nodes that use a 
MANET-routing protocol as shown in Figure 1.  In SRC’s 
existing HIL test-bed, the Warfighter nodes are real nodes 
(Compaq iPAQs), while the sensor nodes are simulated 
entities with QualNet.  All of the nodes then use QualNet as 
a “Communications Effects Server”.  A real node has a 
corresponding “mirrored node” within QualNet that uses 
QualNet’s Media Access Control (MAC) and Physical 

(PHY) layers, in conjunction with realistic propagation and 
terrain models, to model that real node’s wireless 
connectivity to the virtual nodes and other real nodes.  The 
simulated entities use the QualNet models for IP.  However, 
those simulated entities can use a “System Abstraction 
Layer” [7] to run “real” (e.g., Linux-based and JTRS-
compliant) routing software and “real” application layer 
sensor-processing software.  In this case, the simulation tool 
(e.g., QualNet) also functions as a “software validator” that 
debugs network-layer and application-layer software in 
large networks of real/virtual nodes while maintaining 
reasonable fidelity for the communications-effects (e.g., 
latency and loss), mobility models and operational 
scenarios. 
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Figure 1.  HIL Interfaces for Wireless Sensor Networks 

 Existing simulation tools have similar capabilities. For 
example, ns2 has both an “opaque mode” and a “protocol 
mode” [1].  In opaque mode, the ns2 simulator does not 
manipulate the “real-world” protocol fields. Live data 
packets may be dropped, delayed, re-ordered, or duplicated, 
but no protocol processing is performed.  In protocol mode, 
the ns2 simulator is able to interpret and/or generate live 
network traffic containing arbitrary field assignments.  
References [2] and [3] describe “IP-Layer Bridges” that 
allow external applications to function as traffic generators 
for a simulated wired network.  Ref. [4] describes 
techniques whereby a general-purpose computer can 
emulate a multi-port delay-error simulator.  Conversely Ref. 
[5] describes how real systems can generate realistic 
network-traffic traces as an input to a hardware-based 
Delay-Error Simulator. Finally, the High-Level Architecture 
(HLA) and DIS standards allow an application-layer “HIL 
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Bridge” capability between the real and virtual domains.  
However, this past work did not fully support the 
application shown in Figure 1 -- with the provision of the 
Communications Effects Server for multiple real nodes 
being the key omission. This new HIL capability allows 
multiple real wired and wireless nodes to interact with an 
arbitrary number of simulated nodes. An SRC-developed 
System Abstraction Layer (SAL) also enables the simulated 
nodes to run the same routing and application-layer 
software-code as the real nodes.   
 This paper focuses on the practical software-design 
issues needed to implement the HIL capabilities shown in 
Figure 1.  As such, it outlines how the QualNet simulation 
tool can be extended to provide an HIL capability that 
supports multiple, mobile nodes combined with a realistic 
Communications-Effects Server capability.  The extension 
of these techniques to OPNET and ns2 is feasible. 
 As a brief overview, QualNet is an event-driven 
network simulation tool (www.scalable-networks.com) that 
is a commercial version of the GloMoSim package 
developed under the Defense Advanced Research Projects 
Agency (DARPA) Global Mobility (GLOMO) program. 
QualNet is designed for modeling IP traffic across Mobile 
Ad hoc Networks.  It follows the ISO model and uses a 
TCP/IP stack derived from the BSD stack. A key feature of 
QualNet is that large simulations often run faster than real-
time. For example, simulating 30 minutes of sensor-network 
operations (with 100 sensor nodes that use Dynamic Source 
Routing (DSR) [6] as their routing protocol) takes about 1 
minute of “wall-time” on a single-processor 1.8 GHz 
Pentium PC.  This feature is the basis for this paper’s 
Communications Effects Server capability.   (Note: other 
tools such as OPNET may also run “faster than real-time” in 
some scenarios.) 
 

2. APPLICATION-LAYER HIL INTERFACES  
  
A general-purpose HIL environment should allow 
application-layer information, DIS PDUs, IP packets and 
non-IP data packets to be passed between real nodes on an 
external network and virtual nodes within a simulation, as 
shown in Figure 1.  This section outlines both the 
Application-Layer HIL Interface and the DIS Interface.  
The next two sections focus on the more difficult problem 
of bridging IP packets from multiple real nodes into a 
MANET simulation tool such as QualNet. 
 
2.1 Application-Layer HIL Interface  
 
For this interface, all of the network (IP) and transport layer 
(Transport Control Protocol (TCP) and User Datagram 
Protocol (UDP)) information is removed before the 
application-layer traffic is passed between a real node and 
its mirrored node within QualNet.  The transport and 

network layer code in QualNet then regenerates this header 
information as the packet travels down the IP stack in 
QualNet. This application-layer interface is straightforward 
since there are no communications or mobility effects 
involved. 
    
2.2 Distributed Interactive Simulation (DIS) Interface  
 
In support of Air Force Research Lab’s (AFRL’s) 
Cooperative Attack research, a DIS interface was required 
to receive Position, Location and Tracking (PLT) data from 
a real UAV.  The standard QualNet distribution lacked a 
built-in DIS capability.  However, SRC was able to easily 
construct one based on VR-Link, which was written by 
MÄK Technologies (www.mak.com).  Other vendors’ DIS 
software packages were also available.  So, this interface 
was straightforward. 
 

3. HIL INTERFACE FOR IP TRAFFIC  
  
The HIL simulation environment shown in Figure 1 requires 
an HIL interface between simulated IP-speakers and real IP-
speakers. That interface should support both UDP and TCP 
traffic.    
 This section first presents the overall architecture for an 
IP-Layer HIL Bridge.  It then gives details on six important 
implementation issues – namely: a) IP header format 
translation; b) “Packet Teleportation” between the HIL 
Bridge code and the mirrored nodes in QualNet; c) porting 
Linux-based routing software to run within QualNet; d) 
ICMP issues; e) Address Resolution Protocol (ARP) issues; 
and f) clock synchronization between the real and virtual 
domains. For simplicity, this section gives a detailed design 
for the case of one real stationary-node interacting with N 
virtual nodes.  The next section then outlines a design that 
supports multiple real mobile-nodes.   
 This paper focuses on developing an HIL capability for 
the QualNet simulation tool.  However, these techniques are 
applicable to other tools such as OPNET and ns2. 

3.1. HIL Architecture for One Real Node  
 
As shown in Figure 2, the real node is “mirrored” with 
QualNet to model propagation and mobility effects.  As 
such, QualNet is used as a “Communications-Effects Server 
for the real nodes.  This mirrored node in QualNet does not 
run applications or routing protocols within the simulation. 
Instead, the applications and routing protocols run on the 
real machine with an unmodified IP stack. 
 IP datagrams (containing application and routing 
information) are passed between the real node’s Ethernet 
network and the QualNet simulation as shown in Figure 2.  
This is accomplished by using a Packet Socket to read 
network frames from the Ethernet network, a “HIL Bridge 
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to move datagrams into and out of QualNet via the Interface 
Node, and various QualNet applications to support 
“teleporting” datagrams between the Interface Node and the 
real node mirrored in QualNet.  Writing IP packets back to 
the Ethernet network uses a Raw Socket in the current 
implementation.   
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 Figure 2.  HIL Bridge Architecture 

 Packets from applications on the real node are 
forwarded to the simulation host where they are passed to 
the HIL Bridge application via Linux’s Packet Socket 
interface.  (Note: Packet Sockets preserve the Ethernet 
header information for use by the HIL Bridge code.)   
 The HIL Bridge adds a new “Message-Application 
header” to the incoming IP packet.  The packet is then 
passed to the Interface Node in the QualNet simulation via 
an Operating System (OS) level Inter-Process 
Communication (IPC) mechanism.  The Interface Node then 
“teleports” the IP packet to the real node’s corresponding 
mirrored node.  This teleport function uses a Message 
Application (MSG App).  The mirrored node within 
QualNet checks the MSG App header and determines that 
the received packet contains an IP datagram from its 
corresponding real node.  It reacts by pushing  the complete 
packet down into its IP stack.  The packet is then sent out 
the simulated MAC and PHY layers.  The PHY layer of the 
simulated destination node eventually receives the packet 
(possibly after it has been forwarded by several intermediate 
nodes) and passes it up its IP stack.  
 The remainder of this paper focuses on the technical 
details on implementing this architecture. 
 
3.2. IP Header Format and CRC Calculations  
 
QualNet uses a TCP state-machine that was ported from 
FreeBSD. This TCP implementation provides fairly 
complete functionality, such as packet reordering and slow-
start after the loss of an IP packet.  However, IP 
fragmentation is currently disabled in QualNet.  This is a 

typical simplification used within many network-simulation 
tools.  It will only cause problems if fragmented packets are 
passed into the simulation.   
 Another difference between the IP, UDP, and TCP 
code in QualNet and the analogous code in a standalone 
computer is that the QualNet code does not perform 
checksum calculations on outgoing packets or check the 
checksums on received packets.  This simplification speeds 
simulation execution and is perfectly legitimate because 
QualNet itself decides whether or not packets are received 
correctly at each hop.  Since a standalone computer would 
drop a “QualNet IP packet”, because it would fail the IP 
layer checksum test, the HIL Bridge code must translate 
between the header formats used within QualNet and IPv4 
networks. 
   
3.3 HIL Bridge 
 
The HIL Bridge packet format shown in Figure 3 is used to 
transport application layer and IP layer traffic to and from 
QualNet.  (Note: since this header is not used “over the 
wire”, the fields are word-aligned for ease of coding rather 
than header-size efficiency.)  The same header format is 
used for both the IP-Layer HIL Bridge and the various 
Application-Layer HIL Interfaces outlined previously. 
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Figure 3.  HIL Bridge Packet Format 

 This header, which contains Type, Length, Source 
Node, and Destination Node fields, is appended to the start 
of the actual data packet before it is sent across the IPC 
mechanism shown in Figure 2.  The Type and Length fields 
are 32-bit integers while the Source and Destination Node 
addresses are 64-bit integers so they can handle Ethernet 
MAC addresses.  The Type field indicates the type of data 
contained in the payload and the Length field the number of 
bytes in the payload and message-application header.  Table 
1 shows the currently-implemented packet types.  The 
Source Node and Destination Node fields give the payload’s 
source and destination addresses. For unicast IP packets, 
these fields will match the source and destination address of 
the IP datagram.  For broadcast packets, they will indicate 
the addresses of the nodes that sent and received the packet.  
(Note: the source and destination node fields should always 
indicate a specific node address, never a broadcast address 
or range of addresses.  Otherwise, an incoming data packet 
cannot be directed to the appropriate mirrored node within 
QualNet.)  
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Table 1. HIL Bridge Data Types 

Type Data Payload 

1 IP traffic IP datagram 

2 MAIS 
endgame 

Application 
data 

3 DIS Application 
data 

  
 When functioning as an application layer bridge, the 
HIL Bridge code can determine application packet types 
based on which socket received the packet (since each one 
listens on a unique port). When bridging at the IP level, raw 
IP packets are not classified but instead sent across the 
bridge all together without regard to application type.  
When receiving data-packets back from QualNet, the HIL 
Bridge gets the information from the message-application 
header added by the Message Application on the mirrored 
node.  This information is used to generate real 
TCP/UDP/IP headers, with correct checksums and the IP 
address of the mirrored node’s corresponding real node,) 
before placing the data-packet back onto the real network.   
 
3.4 Packet Teleportation 
 
The dedicated Interface Node shown in Figure 2 resides 
within the QualNet simulation and receives packets from 
the IPC mechanism (e.g., FIFO or message queue) before 
“teleporting” those packets to the correct mirrored-node 
within QualNet.  The Interface Node does not participate in 
the simulation in any other way. The packet teleportation, 
which is accomplished using the Message Application, 
takes place in zero simulation time, and avoids the Interface 
Node’s protocol stack altogether. This technique is only 
suitable in sequential simulations because it would violate 
lookahead assumptions required for parallel simulations. 
 The mirrored node removes the Message Application 
header before transmitting the packet within the simulated 
network.  The packet traverses the simulated MAC and 
PHY layers before arriving at its destination node. If the 
destination is a mirrored node that is simulating a real host 
outside of QualNet, the destination adds the Message 
Application header to the packet and teleports it back to the 
Interface Node.  The Interface Node in turn places it on the 
outgoing IPC mechanism for transmission to the HIL 
Bridge code.  The HIL Bridge code uses the Message 
Application header to then send the IP packet to the correct 
real node. In essence, this allows QualNet to act as 
“Communications Effects Server” for a real node that is 

interacting with an operational scenario within a larger 
virtual environment.  This description focused on bridging 
IP packets into QualNet.  However, the HIL Bridge also 
provides an application-layer interface for bridging 
application layer data where the contents of the IP and 
transport layer headers are not important. 
 
3.5 Mirrored vs. Simulated nodes 
 
A QualNet node’s IP stack must determine if it is running 
on a mirrored or simulated node.  This is accomplished by 
running a passive “mirror” application on all mirrored 
nodes.  The IP stack on a QualNet node checks for the 
presence of the mirror application in order to determine if 
its node is a “mirror” of a real node.  If the QualNet IP stack 
finds the mirror application on the node, it teleports IP 
packets to the Interface Node.  If the QualNet IP stack does 
not find the mirror application, it allows them to continue 
up the stack of its simulated node. This approach is 
advantageous because it requires no changes to the existing 
QualNet Node data-structure, which is used throughout the 
existing simulation code. 
 
3.6 Porting Linux-Based Routing Protocols to QualNet 
 
The main technical issue with porting routing-code to the 
QualNet simulation package is that “real” routing code runs 
as different copies on multiple nodes while QualNet 
emulates the same routing code on multiple virtual-entities.  
As such, the QualNet “Node Data Structure” (which 
indicates which virtual entity is currently being simulated) 
has to be passed to many of the routing protocol’s functions.  
As described in [7], this can be accomplished via a “System 
Abstraction Layer” (SAL) that allows the routing software 
to run on Linux, Windows, the JTRS and QualNet. 
 In order to call QualNet functions from within the SAL 
wrapper functions, the QualNet Node structure needed to be 
accessible. This was accomplished by encapsulating it 
within a “SalTask structure”, which was then passed as an 
argument to most SAL functions. The SalTask held all 
“global” data for a task.  By protecting this data within the 
SalTask structure, each task on each simulated node was 
provided with its own “protected” memory region within 
the QualNet simulation environment. 
 QualNet is essentially callback-based and relies on 
layer-specific message handlers to process messages. SRC’s 
current SAL is also callback-based; applications provide 
callbacks to handle system events, such as message queues, 
timers expiration or data arrival.  With the exception of 
startup code, the routing protocol’s native callback 
functions ran unmodified. QualNet messages were simply 
translated to SAL events, and the routing-protocol’s 
callbacks then executed as normal.  This technique allowed 
SRC to use QualNet as a “software-validator” that helped 
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debug our unmodified JTRS-compliant routing software in 
large networks.  This same SAL technique was also used to 
port application-layer sensor processing software from 
Linux and Windows CE to run within QualNet simulations.  
(Note: a similar tool has been reported for OPNET [8].) 
 
3.7 Internet Control Message Protocol (ICMP) 
 
QualNet does not simulate common ICMP messages, such 
as “host unreachable”, “echo”, and “host unreachable”. 
Unknown ICMP messages received by a simulated node are 
silently discarded. Hence, ingress filtering of ICMP 
messages is not strictly necessary within the HIL Bridge but 
may improve performance in larger simulations. 
 
3.8 Address Resolution Protocol (ARP) Issues 
 
The QualNet simulation host computer must be configured 
to answer ARP requests (from real nodes) for all of the 
simulated and mirrored nodes.  Since the real nodes (that 
are mirrored within QualNet) are likely to reside on the 
same Ethernet network as the source of the ARP requests, 
all real nodes other than the simulation host must be 
configured to only accept ARP replies from the simulation 
host.   
 This technique (along with static ARP tables at the real 
nodes) will support multiple real nodes with a fixed set of 
one-hop neighbors. However, the simulation host will 
answer all ARP requests made by the real node, whether or 
not the target of the ARP request is in radio range.  That 
problem can be solved by writing an ARP implementation 
that runs on the Interface Node and determines whether or 
not to answer ARP requests based on the node locations in 
the QualNet simulation. With this improvement, the 
simulation tool can determine whether the ARP request’s 
target would actually have heard the ARP request and 
whether the source would have successfully received the 
ARP reply.   
 Another issue is that if one real node sends an ARP 
request for another real node, it will get two replies: one 
from the real node and another from the sim host. One 
solution is to filter ARP requests at each node and reject 
those coming from other real nodes.  
 
3.9 Clock Synchronization Between Real and Virtual 
Nodes 
 
This HIL capability uses the Kansas University Real-Time 
(KURT) Linux (http://www.ittc.ku.edu/kurt/), which 
provides microsecond timing resolution and event-driven 
real-time scheduling. KURT-Linux decreases the timer 
resolution from 20-30 ms to 50-70 µs. 
 Within the QualNet simulation tool, the main-event 
loop contains a “Process Event” function. This HIL 

capability added a check to the Process Event function 
which determines whether the simulation is either ahead of 
or behind “wall time”.  If it is ahead then the HIL Bridge’s 
IPC mechanism uses a blocking read.  If it is behind then a 
non-blocking read is used.  This simple technique maintains 
clock synchronization between the real and virtual domains 
– if the underlying simulation tool runs “faster than real 
time”.  It is essentially a low-cost implementation of the 
HLA RunTime Infrastructure (RTI). 
 
4. ADDITIONAL DESIGN ISSUES FOR MULTIPLE 

REAL NODES 
 

This paper has focused on the simple case of one real 
stationary-node and N virtual nodes. This section outlines 
the additional software required to support multiple real 
mobile-nodes within the HIL capability described by this 
paper.  A future paper will give more technical details.  
 The major issue with supporting multiple real nodes is 
that forwarding datagrams through real nodes (in the case 
where a real node lies between the source and destination 
nodes) requires that the HIL Bridge send the packet back 
out (from a simulated node in QualNet) to the real node 
with modified Ethernet headers.  Otherwise, the real node 
cannot determine which mirrored node sent that packet.  
Similarly, the HIL Bridge must also have access to the 
Ethernet source address of the incoming packets from real 
nodes.  Otherwise, the HIL Bridge cannot forward that 
packet to the correct mirrored node in the network path.
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Figure 4.  Multi-Node Packet Path When Multiple Real 
Nodes are Used in HIL Simulation 

 As an example, let real node A send a packet to real 
node E along a network path of A-B-C-D-E.  Assume that 
packet must pass through simulated nodes B and D as well 
as real/mirrored node C.  That packet therefore travels 
through the simulation host (S) four times. Figure 4 shows 
the path taken by packets between the real nodes on the 
network and the mirrored/simulated nodes within the 
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simulation. Real nodes appear as squares below the 
simulation host, mirrored nodes appear as squares above the 
simulation host, and simulated nodes appear as circles 
above the simulation host. Segments 1, 4, 5, and 8 occur 
“over the wire” and consist of actual Ethernet frames.  
Segments 2, 3, 6, and 7 occur over a Unix domain socket 
and consist of the IPC packets described in Section 3.3. 
 Table 2 shows the proper headers for packets traveling 
both “over the wire” between the real nodes and the 
simulation host, and also via the IPC mechanism between 
the interface application and a mirrored node.  The IPC 
header indicates which nodes sent and received the packet.  
It is used to: a) create the MAC layer headers on a packet 
sent to a real node from the simulation host; and b) to pass 
packets received from a real node to the correct mirror 
node. 

 Table 2. Network and IPC headers 

Path Type IP MAC IPC 

  SRC DS
T 

SRC DS
T 

SRC DS
T 

1 Enet A E A B N/A N/A 

2 IPC A E N/A N/A A B 

3 IPC A E N/A N/A B C 

4 Enet A E B C N/A N/A 

5 Enet A E C D N/A N/A 

6 IPC A E N/A  N/A  C D 

7 IPC A E N/A  N/A  D E 

8 Enet A E D E N/A N/A 

 
Enforcing this sequence of source/destination MAC address 
within the Ethernet frames requires either: 

• A custom MAC-layer driver to place IP packets back 
out on the wire via the Raw Socket interface. This 
driver would also drop ARP packets from other real 
nodes on the same Ethernet segment. 

• Using an Ethernet Switch and/or multi-port Ethernet 
NIC to place each real host into its own Ethernet 
segment. This approach requires a separate Ethernet 
port for each real node, but it does not require 
“spoofing” Ethernet source addresses. 

The latter approach is easier to implement, while the former 
approach allows greater scalability in the number of real 
nodes in the HIL test-bed. The packet socket interface 

currently used to receive packets discards the MAC layer 
information upon their reception. This information is critical 
when the simulation host is communicating with multiple 
real nodes as it provides a way to determine which node 
actually sent the packet. As Table 2 shows, the IP source 
address is not a reliable indicator of which node actually 
sent a packet.  Finally, the MAC layer driver must also drop 
ARP packets received from other real nodes in order to 
maintain consistency between each node’s routing table and 
ARP cache. 
 

5. CONCLUSIONS AND FUTURE WORK 
 

Hardware-in-the-Loop (HIL) simulations allow system 
designers and integrators to combine the reality of 
operational hardware and software with the inexpensive 
scalability of software simulations. This paper gave 
implementation details for a HIL test-bed (for wireless and 
wired networks) that supports one real node interacting with 
N virtual entities within a MANET application scenario. It 
also outlined the extension of that HIL architecture to 
support multiple real nodes.  This HIL test-bed provides 
mechanisms for running the same routing and application 
layer software on both real and simulated nodes. It also 
allows the simulation tool to act as a “Communications 
Effects Server” for the real nodes.  As such, this HIL 
capability can provide a software validation test-bed for 
networking software intended for SDR applications. 
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