
HARDWARE-IN-THE-LOOP SIMULATION TECHNIQUES FOR VALIDATING
SOFTWARE DEFINED RADIO (SDR) SOFTWARE

Andreas Yankopolus, Peter Sholander, and Glenn Frank

Scientific Research Corporation, Atlanta, GA, U.S.A.
{ayank, psholander, gfrank}@scires.com

ABSTRACT

This paper describes a Hardware-in-the-Loop (HIL)
simulation capability for wired and wireless networks that
allows Internet Protocol (IP) packets, application-layer
information, and Distributed Interactive Simulation (DIS)
Protocol Data Units (PDUs) to be passed between real
nodes on an external network and their “mirrored” virtual
mobile-nodes within a Mobile Ad hoc Network (MANET)
simulation. This provides a “Communications-Effects
Server” capability for those real-nodes. The current
applications include modeling cooperative attack by
Unmanned Aerial Vehicles (UAVs), instrumented test-
ranges, and networks of Unattended Ground-based Sensors
(UGS). This HIL environment also functions as a software
validation test-bed for Linux-based sensor-processing
software and Joint Tactical Radio System (JTRS) compliant
routing software.

1. INTRODUCTION

Simulation-based acquisition programs are starting to
require the validation of networking protocols in Hardware-
in-the-Loop simulations that contain 10’s of real actors and
1000’s of virtual entities. The simulation entities should run
the “real code” for the network layers and applications –
since this can validate the correctness of production
software in large networks without requiring large-scale
field exercises. This is a critical capability because
“kluged-up” simulation code and the production “gold
code” can produce significant performance differences. In
addition, simulation code often uses shortcuts that
complicate a subsequent port to target platforms such as
JTRS.
 Another issue is realistic modeling of the
“communications effects” introduced by wireless channels
and mobility. As an example, consider Information
Assurance (IA) software running on UGS nodes that use a
MANET-routing protocol as shown in Figure 1. In SRC’s
existing HIL test-bed, the Warfighter nodes are real nodes
(Compaq iPAQs), while the sensor nodes are simulated
entities with QualNet. All of the nodes then use QualNet as
a “Communications Effects Server”. A real node has a
corresponding “mirrored node” within QualNet that uses
QualNet’s Media Access Control (MAC) and Physical

(PHY) layers, in conjunction with realistic propagation and
terrain models, to model that real node’s wireless
connectivity to the virtual nodes and other real nodes. The
simulated entities use the QualNet models for IP. However,
those simulated entities can use a “System Abstraction
Layer” [7] to run “real” (e.g., Linux-based and JTRS-
compliant) routing software and “real” application layer
sensor-processing software. In this case, the simulation tool
(e.g., QualNet) also functions as a “software validator” that
debugs network-layer and application-layer software in
large networks of real/virtual nodes while maintaining
reasonable fidelity for the communications-effects (e.g.,
latency and loss), mobility models and operational
scenarios.

DIS Interface to
Other Simulations

Virtual Entities
(in QualNet)

Network Layer
Interface to Real
IP Traffic

Actual Linux-Based
Routing Software on
Virtual Entities

Application Layer
Interface to Actual
Sensor-Processing
Software

iPAQ
DIS Interface to
Other Simulations

Virtual Entities
(in QualNet)

Network Layer
Interface to Real
IP Traffic

Actual Linux-Based
Routing Software on
Virtual Entities

Application Layer
Interface to Actual
Sensor-Processing
Software

iPAQ

Figure 1. HIL Interfaces for Wireless Sensor Networks

 Existing simulation tools have similar capabilities. For
example, ns2 has both an “opaque mode” and a “protocol
mode” [1]. In opaque mode, the ns2 simulator does not
manipulate the “real-world” protocol fields. Live data
packets may be dropped, delayed, re-ordered, or duplicated,
but no protocol processing is performed. In protocol mode,
the ns2 simulator is able to interpret and/or generate live
network traffic containing arbitrary field assignments.
References [2] and [3] describe “IP-Layer Bridges” that
allow external applications to function as traffic generators
for a simulated wired network. Ref. [4] describes
techniques whereby a general-purpose computer can
emulate a multi-port delay-error simulator. Conversely Ref.
[5] describes how real systems can generate realistic
network-traffic traces as an input to a hardware-based
Delay-Error Simulator. Finally, the High-Level Architecture
(HLA) and DIS standards allow an application-layer “HIL

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Bridge” capability between the real and virtual domains.
However, this past work did not fully support the
application shown in Figure 1 -- with the provision of the
Communications Effects Server for multiple real nodes
being the key omission. This new HIL capability allows
multiple real wired and wireless nodes to interact with an
arbitrary number of simulated nodes. An SRC-developed
System Abstraction Layer (SAL) also enables the simulated
nodes to run the same routing and application-layer
software-code as the real nodes.
 This paper focuses on the practical software-design
issues needed to implement the HIL capabilities shown in
Figure 1. As such, it outlines how the QualNet simulation
tool can be extended to provide an HIL capability that
supports multiple, mobile nodes combined with a realistic
Communications-Effects Server capability. The extension
of these techniques to OPNET and ns2 is feasible.
 As a brief overview, QualNet is an event-driven
network simulation tool (www.scalable-networks.com) that
is a commercial version of the GloMoSim package
developed under the Defense Advanced Research Projects
Agency (DARPA) Global Mobility (GLOMO) program.
QualNet is designed for modeling IP traffic across Mobile
Ad hoc Networks. It follows the ISO model and uses a
TCP/IP stack derived from the BSD stack. A key feature of
QualNet is that large simulations often run faster than real-
time. For example, simulating 30 minutes of sensor-network
operations (with 100 sensor nodes that use Dynamic Source
Routing (DSR) [6] as their routing protocol) takes about 1
minute of “wall-time” on a single-processor 1.8 GHz
Pentium PC. This feature is the basis for this paper’s
Communications Effects Server capability. (Note: other
tools such as OPNET may also run “faster than real-time” in
some scenarios.)

2. APPLICATION-LAYER HIL INTERFACES

A general-purpose HIL environment should allow
application-layer information, DIS PDUs, IP packets and
non-IP data packets to be passed between real nodes on an
external network and virtual nodes within a simulation, as
shown in Figure 1. This section outlines both the
Application-Layer HIL Interface and the DIS Interface.
The next two sections focus on the more difficult problem
of bridging IP packets from multiple real nodes into a
MANET simulation tool such as QualNet.

2.1 Application-Layer HIL Interface

For this interface, all of the network (IP) and transport layer
(Transport Control Protocol (TCP) and User Datagram
Protocol (UDP)) information is removed before the
application-layer traffic is passed between a real node and
its mirrored node within QualNet. The transport and

network layer code in QualNet then regenerates this header
information as the packet travels down the IP stack in
QualNet. This application-layer interface is straightforward
since there are no communications or mobility effects
involved.

2.2 Distributed Interactive Simulation (DIS) Interface

In support of Air Force Research Lab’s (AFRL’s)
Cooperative Attack research, a DIS interface was required
to receive Position, Location and Tracking (PLT) data from
a real UAV. The standard QualNet distribution lacked a
built-in DIS capability. However, SRC was able to easily
construct one based on VR-Link, which was written by
MÄK Technologies (www.mak.com). Other vendors’ DIS
software packages were also available. So, this interface
was straightforward.

3. HIL INTERFACE FOR IP TRAFFIC

The HIL simulation environment shown in Figure 1 requires
an HIL interface between simulated IP-speakers and real IP-
speakers. That interface should support both UDP and TCP
traffic.
 This section first presents the overall architecture for an
IP-Layer HIL Bridge. It then gives details on six important
implementation issues – namely: a) IP header format
translation; b) “Packet Teleportation” between the HIL
Bridge code and the mirrored nodes in QualNet; c) porting
Linux-based routing software to run within QualNet; d)
ICMP issues; e) Address Resolution Protocol (ARP) issues;
and f) clock synchronization between the real and virtual
domains. For simplicity, this section gives a detailed design
for the case of one real stationary-node interacting with N
virtual nodes. The next section then outlines a design that
supports multiple real mobile-nodes.
 This paper focuses on developing an HIL capability for
the QualNet simulation tool. However, these techniques are
applicable to other tools such as OPNET and ns2.

3.1. HIL Architecture for One Real Node

As shown in Figure 2, the real node is “mirrored” with
QualNet to model propagation and mobility effects. As
such, QualNet is used as a “Communications-Effects Server
for the real nodes. This mirrored node in QualNet does not
run applications or routing protocols within the simulation.
Instead, the applications and routing protocols run on the
real machine with an unmodified IP stack.
 IP datagrams (containing application and routing
information) are passed between the real node’s Ethernet
network and the QualNet simulation as shown in Figure 2.
This is accomplished by using a Packet Socket to read
network frames from the Ethernet network, a “HIL Bridge

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

http://www.scalablenetworks.com/

to move datagrams into and out of QualNet via the Interface
Node, and various QualNet applications to support
“teleporting” datagrams between the Interface Node and the
real node mirrored in QualNet. Writing IP packets back to
the Ethernet network uses a Raw Socket in the current
implementation.

Simulation Host (10.0.1.1)

interface
Node

mirrored
node

10.0.0.1

simulated
node

10.0.0.3
Simulated

node
10.0.0.4

Linux
Kernel real

node
10.0.0.1

Ethernet network

node mirrored in QualNet

Ethernet
interface
10.0.1.1

HIL
Bridge

Packet Socket

Raw Socket

QualNet
IPC

Simulation Host (10.0.1.1)

interface
Node

mirrored
node

10.0.0.1

simulated
node

10.0.0.3
Simulated

node
10.0.0.4

Linux
Kernel real

node
10.0.0.1

Ethernet network

node mirrored in QualNet

Ethernet
interface
10.0.1.1

HIL
Bridge

Packet Socket

Raw Socket

QualNet
IPC

 Figure 2. HIL Bridge Architecture

 Packets from applications on the real node are
forwarded to the simulation host where they are passed to
the HIL Bridge application via Linux’s Packet Socket
interface. (Note: Packet Sockets preserve the Ethernet
header information for use by the HIL Bridge code.)
 The HIL Bridge adds a new “Message-Application
header” to the incoming IP packet. The packet is then
passed to the Interface Node in the QualNet simulation via
an Operating System (OS) level Inter-Process
Communication (IPC) mechanism. The Interface Node then
“teleports” the IP packet to the real node’s corresponding
mirrored node. This teleport function uses a Message
Application (MSG App). The mirrored node within
QualNet checks the MSG App header and determines that
the received packet contains an IP datagram from its
corresponding real node. It reacts by pushing the complete
packet down into its IP stack. The packet is then sent out
the simulated MAC and PHY layers. The PHY layer of the
simulated destination node eventually receives the packet
(possibly after it has been forwarded by several intermediate
nodes) and passes it up its IP stack.
 The remainder of this paper focuses on the technical
details on implementing this architecture.

3.2. IP Header Format and CRC Calculations

QualNet uses a TCP state-machine that was ported from
FreeBSD. This TCP implementation provides fairly
complete functionality, such as packet reordering and slow-
start after the loss of an IP packet. However, IP
fragmentation is currently disabled in QualNet. This is a

typical simplification used within many network-simulation
tools. It will only cause problems if fragmented packets are
passed into the simulation.
 Another difference between the IP, UDP, and TCP
code in QualNet and the analogous code in a standalone
computer is that the QualNet code does not perform
checksum calculations on outgoing packets or check the
checksums on received packets. This simplification speeds
simulation execution and is perfectly legitimate because
QualNet itself decides whether or not packets are received
correctly at each hop. Since a standalone computer would
drop a “QualNet IP packet”, because it would fail the IP
layer checksum test, the HIL Bridge code must translate
between the header formats used within QualNet and IPv4
networks.

3.3 HIL Bridge

The HIL Bridge packet format shown in Figure 3 is used to
transport application layer and IP layer traffic to and from
QualNet. (Note: since this header is not used “over the
wire”, the fields are word-aligned for ease of coding rather
than header-size efficiency.) The same header format is
used for both the IP-Layer HIL Bridge and the various
Application-Layer HIL Interfaces outlined previously.

Type

(32-bit
integer)

Length

(32-bit
integer)

Source
Node

(64-bit
integer)

Destination
Node

(64-bit
integer)

Payload

(Variable
length)

Figure 3. HIL Bridge Packet Format

 This header, which contains Type, Length, Source
Node, and Destination Node fields, is appended to the start
of the actual data packet before it is sent across the IPC
mechanism shown in Figure 2. The Type and Length fields
are 32-bit integers while the Source and Destination Node
addresses are 64-bit integers so they can handle Ethernet
MAC addresses. The Type field indicates the type of data
contained in the payload and the Length field the number of
bytes in the payload and message-application header. Table
1 shows the currently-implemented packet types. The
Source Node and Destination Node fields give the payload’s
source and destination addresses. For unicast IP packets,
these fields will match the source and destination address of
the IP datagram. For broadcast packets, they will indicate
the addresses of the nodes that sent and received the packet.
(Note: the source and destination node fields should always
indicate a specific node address, never a broadcast address
or range of addresses. Otherwise, an incoming data packet
cannot be directed to the appropriate mirrored node within
QualNet.)

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Table 1. HIL Bridge Data Types

Type Data Payload

1 IP traffic IP datagram

2 MAIS
endgame

Application
data

3 DIS Application
data

 When functioning as an application layer bridge, the
HIL Bridge code can determine application packet types
based on which socket received the packet (since each one
listens on a unique port). When bridging at the IP level, raw
IP packets are not classified but instead sent across the
bridge all together without regard to application type.
When receiving data-packets back from QualNet, the HIL
Bridge gets the information from the message-application
header added by the Message Application on the mirrored
node. This information is used to generate real
TCP/UDP/IP headers, with correct checksums and the IP
address of the mirrored node’s corresponding real node,)
before placing the data-packet back onto the real network.

3.4 Packet Teleportation

The dedicated Interface Node shown in Figure 2 resides
within the QualNet simulation and receives packets from
the IPC mechanism (e.g., FIFO or message queue) before
“teleporting” those packets to the correct mirrored-node
within QualNet. The Interface Node does not participate in
the simulation in any other way. The packet teleportation,
which is accomplished using the Message Application,
takes place in zero simulation time, and avoids the Interface
Node’s protocol stack altogether. This technique is only
suitable in sequential simulations because it would violate
lookahead assumptions required for parallel simulations.
 The mirrored node removes the Message Application
header before transmitting the packet within the simulated
network. The packet traverses the simulated MAC and
PHY layers before arriving at its destination node. If the
destination is a mirrored node that is simulating a real host
outside of QualNet, the destination adds the Message
Application header to the packet and teleports it back to the
Interface Node. The Interface Node in turn places it on the
outgoing IPC mechanism for transmission to the HIL
Bridge code. The HIL Bridge code uses the Message
Application header to then send the IP packet to the correct
real node. In essence, this allows QualNet to act as
“Communications Effects Server” for a real node that is

interacting with an operational scenario within a larger
virtual environment. This description focused on bridging
IP packets into QualNet. However, the HIL Bridge also
provides an application-layer interface for bridging
application layer data where the contents of the IP and
transport layer headers are not important.

3.5 Mirrored vs. Simulated nodes

A QualNet node’s IP stack must determine if it is running
on a mirrored or simulated node. This is accomplished by
running a passive “mirror” application on all mirrored
nodes. The IP stack on a QualNet node checks for the
presence of the mirror application in order to determine if
its node is a “mirror” of a real node. If the QualNet IP stack
finds the mirror application on the node, it teleports IP
packets to the Interface Node. If the QualNet IP stack does
not find the mirror application, it allows them to continue
up the stack of its simulated node. This approach is
advantageous because it requires no changes to the existing
QualNet Node data-structure, which is used throughout the
existing simulation code.

3.6 Porting Linux-Based Routing Protocols to QualNet

The main technical issue with porting routing-code to the
QualNet simulation package is that “real” routing code runs
as different copies on multiple nodes while QualNet
emulates the same routing code on multiple virtual-entities.
As such, the QualNet “Node Data Structure” (which
indicates which virtual entity is currently being simulated)
has to be passed to many of the routing protocol’s functions.
As described in [7], this can be accomplished via a “System
Abstraction Layer” (SAL) that allows the routing software
to run on Linux, Windows, the JTRS and QualNet.
 In order to call QualNet functions from within the SAL
wrapper functions, the QualNet Node structure needed to be
accessible. This was accomplished by encapsulating it
within a “SalTask structure”, which was then passed as an
argument to most SAL functions. The SalTask held all
“global” data for a task. By protecting this data within the
SalTask structure, each task on each simulated node was
provided with its own “protected” memory region within
the QualNet simulation environment.
 QualNet is essentially callback-based and relies on
layer-specific message handlers to process messages. SRC’s
current SAL is also callback-based; applications provide
callbacks to handle system events, such as message queues,
timers expiration or data arrival. With the exception of
startup code, the routing protocol’s native callback
functions ran unmodified. QualNet messages were simply
translated to SAL events, and the routing-protocol’s
callbacks then executed as normal. This technique allowed
SRC to use QualNet as a “software-validator” that helped

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

debug our unmodified JTRS-compliant routing software in
large networks. This same SAL technique was also used to
port application-layer sensor processing software from
Linux and Windows CE to run within QualNet simulations.
(Note: a similar tool has been reported for OPNET [8].)

3.7 Internet Control Message Protocol (ICMP)

QualNet does not simulate common ICMP messages, such
as “host unreachable”, “echo”, and “host unreachable”.
Unknown ICMP messages received by a simulated node are
silently discarded. Hence, ingress filtering of ICMP
messages is not strictly necessary within the HIL Bridge but
may improve performance in larger simulations.

3.8 Address Resolution Protocol (ARP) Issues

The QualNet simulation host computer must be configured
to answer ARP requests (from real nodes) for all of the
simulated and mirrored nodes. Since the real nodes (that
are mirrored within QualNet) are likely to reside on the
same Ethernet network as the source of the ARP requests,
all real nodes other than the simulation host must be
configured to only accept ARP replies from the simulation
host.
 This technique (along with static ARP tables at the real
nodes) will support multiple real nodes with a fixed set of
one-hop neighbors. However, the simulation host will
answer all ARP requests made by the real node, whether or
not the target of the ARP request is in radio range. That
problem can be solved by writing an ARP implementation
that runs on the Interface Node and determines whether or
not to answer ARP requests based on the node locations in
the QualNet simulation. With this improvement, the
simulation tool can determine whether the ARP request’s
target would actually have heard the ARP request and
whether the source would have successfully received the
ARP reply.
 Another issue is that if one real node sends an ARP
request for another real node, it will get two replies: one
from the real node and another from the sim host. One
solution is to filter ARP requests at each node and reject
those coming from other real nodes.

3.9 Clock Synchronization Between Real and Virtual
Nodes

This HIL capability uses the Kansas University Real-Time
(KURT) Linux (http://www.ittc.ku.edu/kurt/), which
provides microsecond timing resolution and event-driven
real-time scheduling. KURT-Linux decreases the timer
resolution from 20-30 ms to 50-70 µs.
 Within the QualNet simulation tool, the main-event
loop contains a “Process Event” function. This HIL

capability added a check to the Process Event function
which determines whether the simulation is either ahead of
or behind “wall time”. If it is ahead then the HIL Bridge’s
IPC mechanism uses a blocking read. If it is behind then a
non-blocking read is used. This simple technique maintains
clock synchronization between the real and virtual domains
– if the underlying simulation tool runs “faster than real
time”. It is essentially a low-cost implementation of the
HLA RunTime Infrastructure (RTI).

4. ADDITIONAL DESIGN ISSUES FOR MULTIPLE

REAL NODES

This paper has focused on the simple case of one real
stationary-node and N virtual nodes. This section outlines
the additional software required to support multiple real
mobile-nodes within the HIL capability described by this
paper. A future paper will give more technical details.
 The major issue with supporting multiple real nodes is
that forwarding datagrams through real nodes (in the case
where a real node lies between the source and destination
nodes) requires that the HIL Bridge send the packet back
out (from a simulated node in QualNet) to the real node
with modified Ethernet headers. Otherwise, the real node
cannot determine which mirrored node sent that packet.
Similarly, the HIL Bridge must also have access to the
Ethernet source address of the incoming packets from real
nodes. Otherwise, the HIL Bridge cannot forward that
packet to the correct mirrored node in the network path.

mirror
node

A

sim
node

B

mirror
node

C

sim
node

D

mirror
node

E

sim
host

S

real
node

A

real
node

C

real
node

E

1

2 3

4 5

6

8

7

mirror
node

A

sim
node

B

mirror
node

C

sim
node

D

mirror
node

E

sim
host

S

real
node

A

real
node

C

real
node

E

1

2 3

4 5

6

8

7

mirror
node

A

sim
node

B

mirror
node

C

sim
node

D

mirror
node

E

sim
host

S

real
node

A

real
node

C

real
node

E

1

2 3

4 5

6

8

7

Figure 4. Multi-Node Packet Path When Multiple Real
Nodes are Used in HIL Simulation

 As an example, let real node A send a packet to real
node E along a network path of A-B-C-D-E. Assume that
packet must pass through simulated nodes B and D as well
as real/mirrored node C. That packet therefore travels
through the simulation host (S) four times. Figure 4 shows
the path taken by packets between the real nodes on the
network and the mirrored/simulated nodes within the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

simulation. Real nodes appear as squares below the
simulation host, mirrored nodes appear as squares above the
simulation host, and simulated nodes appear as circles
above the simulation host. Segments 1, 4, 5, and 8 occur
“over the wire” and consist of actual Ethernet frames.
Segments 2, 3, 6, and 7 occur over a Unix domain socket
and consist of the IPC packets described in Section 3.3.
 Table 2 shows the proper headers for packets traveling
both “over the wire” between the real nodes and the
simulation host, and also via the IPC mechanism between
the interface application and a mirrored node. The IPC
header indicates which nodes sent and received the packet.
It is used to: a) create the MAC layer headers on a packet
sent to a real node from the simulation host; and b) to pass
packets received from a real node to the correct mirror
node.

 Table 2. Network and IPC headers

Path Type IP MAC IPC

 SRC DS
T

SRC DS
T

SRC DS
T

1 Enet A E A B N/A N/A

2 IPC A E N/A N/A A B

3 IPC A E N/A N/A B C

4 Enet A E B C N/A N/A

5 Enet A E C D N/A N/A

6 IPC A E N/A N/A C D

7 IPC A E N/A N/A D E

8 Enet A E D E N/A N/A

Enforcing this sequence of source/destination MAC address
within the Ethernet frames requires either:

• A custom MAC-layer driver to place IP packets back
out on the wire via the Raw Socket interface. This
driver would also drop ARP packets from other real
nodes on the same Ethernet segment.

• Using an Ethernet Switch and/or multi-port Ethernet
NIC to place each real host into its own Ethernet
segment. This approach requires a separate Ethernet
port for each real node, but it does not require
“spoofing” Ethernet source addresses.

The latter approach is easier to implement, while the former
approach allows greater scalability in the number of real
nodes in the HIL test-bed. The packet socket interface

currently used to receive packets discards the MAC layer
information upon their reception. This information is critical
when the simulation host is communicating with multiple
real nodes as it provides a way to determine which node
actually sent the packet. As Table 2 shows, the IP source
address is not a reliable indicator of which node actually
sent a packet. Finally, the MAC layer driver must also drop
ARP packets received from other real nodes in order to
maintain consistency between each node’s routing table and
ARP cache.

5. CONCLUSIONS AND FUTURE WORK

Hardware-in-the-Loop (HIL) simulations allow system
designers and integrators to combine the reality of
operational hardware and software with the inexpensive
scalability of software simulations. This paper gave
implementation details for a HIL test-bed (for wireless and
wired networks) that supports one real node interacting with
N virtual entities within a MANET application scenario. It
also outlined the extension of that HIL architecture to
support multiple real nodes. This HIL test-bed provides
mechanisms for running the same routing and application
layer software on both real and simulated nodes. It also
allows the simulation tool to act as a “Communications
Effects Server” for the real nodes. As such, this HIL
capability can provide a software validation test-bed for
networking software intended for SDR applications.

REFERENCES

[1] “Network Emulation with the NS Simulator”,
http://www.isi.edu/nsnam/ns/ns-emulation.html
[2] Luigi Rizzo, “Dummynet: a simple approach to the evaluation
of network protocols”, ACM Computer Communication Review,
January 1997.
[3] Qiang Gu, Alan Marshall, “The Design of A Software Bridge
between Real and Simulated Computer Networks”, WMC01,
Arizona, January 2001
[4] “NIST Net Home Page”, http://dns.antd.nist.gov/itg/nistnet/
[5] B. Mah, P. Sholander, L. Martinez and L. Tolendino, “IPB: An
Internet Protocol Benchmark Using Simulated Traffic”, IEEE
MASCOTS ’98, July 1998.
[6] David Johnson, et al, “The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks (DSR)”, draft-ietf-manet-dsr-08.txt,
Feb. 24, 2003.
[7] P. Sholander, P. Coccoli, T. Oakes and S. Swank, “A Portable
Software Implementation of a Hybrid MANET Routing Protocol”,
SDR Forum’s 2002 Technical Conference, November 2002.
[8] Ram Ramanathan,, “Summary of DARPA/ATO FCS
Communications Program on Utilizing Directional Antennas for
Ad Hoc Networking (UDAAN), 2001,
http://www.ir.bbn.com/projects/udaan/udaan-index.html

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

	HARDWARE-IN-THE-LOOP SIMULATION TECHNIQUES FOR VALIDATING
	SOFTWARE DEFINED RADIO (SDR) SOFTWARE

