

RADICAL HORIZON

Development Platform Designed to Speed Market Application Designs

François Luneaufluneau@radicalhorizon.comLouis Luneaulluneau@radicalhorizon.com

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

RADICAL HORIZON

Outline

- Motivation
 - Education
 - Research
 - Future Acquisition Model
- Signal Processing
 - Computational Requirements
 - Signal Processing Hardware
- RF
- Interconnection
- Radio Development Process
- Conclusion

RADICAL HORIZON

Motivation for Testbed Platform

- Education
 - Complement theoretical courses in modern digital communications
 - Exposes students to implementation issues
 - Allow student to see their radio projects put into practice
- Research
 - completing the link between theoretical research and experimental research
 - allow exploration of issues in wireless cellular system
- Compliant with open standards (SCA)
 - Ensure that like the PC world there will be many vendor sources for:
 - reprogrammable hardware
 - middleware software
 - radio application software
 - upgrade kits

Signal Processing

- For older waveform
 - multiple radio sets can be implemented on the latest FPGA-DSP
- For new waveform
 - Processing requirements for wireless protocol grows faster than Moore's Law
 - Hardware accelerators required
 - Multiple FPGAs and DSPs are required
 - 3 FPGA and one DSP for UMTS from vendor A
 - 1 FPGA and three DSP for UMTS from vendor B
 - New techniques also requires more processing power
 - MUD solution for UMTS requires 1 FPGA

Figure 1: Signal Processing Hardware

RF Module

- Testbed
 - 6U cPCI RF Cellular Module in the Rx 824-849/Tx 869-894 band
 - The figure shows how to use the testbed for other frequency band
- Technology
 - Multi-carrier transceiver
 - IF band Sampling
 - Up to 35 MHz bandwidth with current ADC
 - Mixer and IF filter are protocol independent
 - Digitized IF bandwidth contains the data from all the RF channels present in that bandwidth

Interconnection – RF and DSP

- Interconnection based on the requirements defined by OBSAI (Open Base Station Architecture Interface)
- Bidirectional bus capable of 30 Gbits of data per second in both direction
- Uses LVDS at 800 MHz
- Hardware consist of
 - RTM Node
 - RTM Switch Fabric
- Software consist of
 - Link Layer
 - Network Layer
 - Switch
- Many Configuration Possible

Radio Development Environment

Conclusion

- Software radio testbed have been developed that
 - Provides the processing power required by new waveform
 - Supports newly proposed signal processing techniques
 - adaptive receiver, adaptive interference suppression, multi-user multistage RAKE receiver, adaptive turbo coding and exploration of many other novel techniques
 - RF front end allows research in antenna diversity, power amplifier correction technique and ultra wideband
 - A rapid prototype of the solution can be developed using code generated by the simulation tools and operating on the target hardware
- Future
 - The system will be integrated with Mitsubishi Virtual Field Test Simulator that
 - simulates the behavior of thousands of users bringing near real-life condition in the lab
 - Smart Antennas Support