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ABSTRACT 

 
We investigate two approaches using high-level tools to 
map a signal processing algorithm to reconfigurable 
hardware. Our application presents the first step of a phase 
modulation sorter that locates binary phase shift keying 
(BPSK) signals in wide-band data. The first approach uses 
the Xilinx System Generator tool to model the system within 
Matlab/Simulink. These system modules are synthesized to 
hardware as Xilinx IP cores. The second approach uses the 
Streams -C language and compiler to write a high-level 
program (using mostly C code) consisting of software and 
hardware processes.  We will discuss our experiences using 
these high-level tools in terms of their ease of use, and the 
accuracy of their functional simulators, and generated 
hardware. The designs utilized two Virtex 1000E FPGAs. The 
System Generator version of the application used 80% of the 
available area with a placement speed of 70 MHz, compared 
to 60% area utilization and a 60 MHz speed for Streams -C.  
We estimate a productivity improvement of 2X to 4X over 
manual hardware design depending on the complexity of the 
modification, and the stage of system development.  
 

1. INTRODUCTION 
 
The motivation for this study comes from the need to have a 
compliant hardware development system that allows 
developers the flexibility to change portions of the algorithm, 
while not impacting the schedule of the project or “shutting 
down” the system while these modifications are in-progress. 
There are numerous commercially available development 
tools for reconfigurable computing (RCC) systems aimed at 
reducing design time and making the algorithm-to-hardware 
transition less cumbersome. Some tools focus on dataflow 
design, have a graphical interface for algorithm development 
and target special-purpose hardware boards [1], while others 
require the developer to translate their algorithm into a cycle-
by-cycle C-like representation and generate synthesizable 
VHDL (or Verilog) or a net list [2]. Still others [3] have 
algorithm development in a subset of C or Fortran, include 
mapping to specialized hardware boards and allow for high-
level resource allocation on the hardware. We chose to 

evaluate Xilinx’s System Generator for DSP [4] and the open 
source sc2 Streams -C compiler [5]1 in this study.  
 System Generator is a Xilinx software tool for designing, 
simulating, and implementing high performance FPGA -based 
DSP systems, and exists as a plug-in for Mathwork’s 
Simulink.  The VHDL output of the tool is a component 
similar to a Xilinx Coregen core, and can be instanced in any 
design or board model containing Xilinx Virtex or Virtex II 
FPGAs.  System Generator allows bit-true simulation and 
system design to be done in Simulink, without the need for a 
HDL simulator.   
 The sc2 Streams -C tool targets algorithm mapping to 
hardware/software systems. Streams -C provides language-
level support (a subset of C) for stream-oriented 
computation. The Streams -C programming model is that of 
communicating processes. A system consists of a collection 
of processes that communicate using streams and signals. 
Processes can run either in software on conventional 
processors or in hardware on FPGAs. The sc2 synthesis 
compiler compiles hardware processes into RTL VHDL. The 
software libraries provide a functional simulator and a 
runtime library. The sc2 compiler currently, targets the 
Annapolis Micro Systems Firebird board. 
   

2. BPSK APPLICATION 
 
BPSK is a form of Phase Shift Keying (PSK) modulation.  In 
BPSK modulation, the phase of the RF carrier is shifted 180 
degrees in accordance with a digital bit stream.  A 
generalized representation may be written as 

[ ]0)(cos)( θπω ++= tptAts c   

Where p(t) is a binary switching function with possible 
states of  0 or 1 that represents the digital modulation.  The 
term θ 0 dictates the initial phase of the signal.  A "one" 
causes a phase transition while a "zero" does not.   
 One characteristic of BPSK modulation is that squaring 
the data will produce a strong peak in the frequency domain, 
while the data itself contains no such peak.  This is distinct 

                                                 
1 The sc2 Streams-C compiler was developed at LANL.  
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from other forms of communication modulation such as 
QPSK (Quadrature Phase Shift Keying), QAM (Quadrature 
Amplitude Modulation) or FSK (Frequency Shift Keying).  
Squaring the above equation produces 

[ ]0
2 2)(22cos

22
)( θπω +++= tpt

AA
ts c  

which simplifies to 

[ ]0
2 22cos

22
)( θω ++= t

AA
ts c  

The switching function, p(t), is now multiplied by 2π and 
thus does not provide a phase shift.  Therefore, this 
squaring technique removes the digital modulation and the 
spectral spreading associated with it in favor of an easily 
identifiable spectral peak at double the carrier frequency.  
The test application will exploit this characteristic to search 
input data for the presence of a BPSK signal.  Spectral plots 
shown in Figure 1 illustrate this property. 
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Figure 1.  Spectral plots of s(t) and s2(t) 
 

 This application, therefore, consists of four parts: 1) 
calculating a FFT on the data and the square of the data. 
Only the magnitude of the output is considered, and DC and 
Nyquist bands are ignored. 2) Four FFTs are accumulated on 
a frequency bin by frequency bin basis to reduce the 
probability of false detection due to noise. 3) We threshold 
the accumulated FFT output based on its mean to find 
frequencies that have strong peaks. 4) Peaks are compared 
between the squared and non-squared data to determine if a 
peak in the squared data is a result of a BPSK signal or a 
continuous wave.  The algorithm flow is shown in Figure 2. 
 This application was chosen for testing due to its 
complexity, as it requires a large amount of processing for 
the FFT, immediate data storage and accumulation of the 
FFT outputs, and control logic to handle the threshold and 
peak detection. For instance, due to aliasing and 
quantization, every time a peak is detected in the squared 
data, six frequency bins of non-squared data must be 
checked. Also, for comparison purposes we have a hand-
coded (VHDL) version of this application. 
 
 
 
 

 
Figure 2. BPSK algorithm 

 
3. SYSTEM GENERATOR TOOL 

 
3.1. Introduction 
 
System Generator is a Xilinx product that acts as an 
additional blockset for Mathwork’s Simulink [6].  Simulink is 
a block diagram design tool for Matlab that allows time-
based simulation and graphical design.  Models (algorithms) 
are constructed via a graphical user interface (GUI) by 
dragging different blocks onto the workspace and 
connecting them.  Most of the Matlab functions are 
available for use within Simulink. The system uses the 
standard Matlab workspace for file I/O. 
 The System Generator blocks closely correspond to 
Xilinx IP cores available in their Coregen product. It 
generates VHDL for each model by instancing the cores in 
automatically generated wrappers. These wrappers are then 
connected together.   Thus, only blocks in the System 
Generator blockset can be converted to VHDL, although the 
whole range of Simulink blocks and Matlab functions may be 
used for testing and verification inside the Simulink 
simulation environment.   
 The System Generator blockset includes block 
implementation of most low-level and intermediate-level 
FPGA functions, such as adders, multipliers, muxes, 
registers, and counters.  Selected higher-level building 
blocks are also available, such as FIR filters (including 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



support for Matlab’s fdatool), FFTs, a CORDIC-based 
Cartesian to Polar converter, convolution encoder/decoder, 
and a soft microprocessor core. 
 For simulation, all Xilinx blocks act like native Simulink 
blocks.  Simulation of the Xilinx blocks is both bit and cycle 
true.  For synthesis, project files may be created for a user-
specified (XST, Leonardo, or Synplicity) synthesis tool.  
Additionally, project files for HDL simulation (ModelSim 
CAD tool) are produced.   
 The VHDL produced by System Generator may be 
instanced as a component in a larger design.  Alternatively, 
pin constraints may be specified for each port in the Simulink 
model in order to map it directly to the FPGA.  Because of 
the reliance on Xilinx IP cores, the tool will only generate 
code for Xilinx Virtex, Virtex2, and Spartan FPGAs. Many of 
the high level blocks require the Virtex2. 
 Figure 3 shows the general design flow for using 
System Generator for hardware design.  An example design-
flow shown in Figure 4 is the mean calculation used in the 
BPSK discrimination algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  System Generator Design Flow 

 
 
 
 
 
 
 

 
Figure 4.  Example of System Generator Algorithm 

 
3.2. System Generator: BPSK appl ication mapping to   
hardware 
 
The BPSK algorithm described in Section 2 was implemented 
with the System Generator blockset, including the FFT.  Due 
to constraints with the tool (described in Section 3.3), it was 
necessary to build all the components from low-level blocks, 

such as adders, muxes, and multipliers.  Subsystems were 
made for each of the components shown in Figure 2, and 
these were connected together to produce a design in 
Simulink.  Emphasis was put on making the design capable 
of handling data in real time.  Thus, the algorithm is fully 
pipelined to run continuously on the hardware (or for a 
given number of seconds in simulation), with a continuous 
stream of input data.  
 The performance results in Table 1. show the placed and 
routed design generated by System Generator was split 
across two Xilinx Virtex 1000E FPGAs and each chip met the 
clock speed constraint of 70 MHz.  It used just over 19500 
slices, which accounts for approximately 80% of the total 
available area.  Once the learning curve on the tool was 
overcome, the total development time to map our BPSK 
algorithm to reconfigurable hardware was approximately 2 to 
3 weeks. We estimate that a hand-coded version of this 
application in VHDL requires about 4 to 8 weeks of 
development time, thus, a productivity speed up of 2X to 4X. 
 
3.3. Evaluation of System Generator 
 
One might view System Generator as a high-level design tool 
in which high-level function blocks are connected together 
and the tool handles the remaining details.  This view is 
inconsis tent with our experience.  While the design entry 
method is high-level, the designs themselves typically are 
not.  Many of the high-level blocks were too constrained for 
use in our application.  For example, the existing FFT block 
provided with System Generator can only handle 16-bit input 
and 16-bit output, and requires a continuous stream of input 
data without a data valid indicator. HDL designers must 
address these same constraints with respect to the Xilinx 
FFT core.  Nevertheless, this caused us to build many 
designs entirely from the basic building blocks, blocks 
similar to the functionality already available in VHDL or 
Verilog.  In addition, the amount of control logic necessary 
to handle delays and clocking often requires low-level 
manipulation by the user. 
 However, there are definite advantages to using System 
Generator instead of conventional HDL languages.  Some of 
the high-level blocks in System Generator are accurate.  The 
FIR filter is an appropriate example, which not only allows 
input of coefficients or the dynamic design of a filter in 
Matlab, but also will automatically analyze the coefficients 
for symmetry and optimize accordingly.  Even where high-
level blocks are not available, System Generator provides an 
efficient GUI for design entry.  The design also makes it 
trivial to save common pieces of code (blocks) for later use, 
and it is a straightforward process to design these blocks to 
configure themselves automatically for varying bit widths 
and number of iterations.  Thus, changes to an algorithm can 
be made quickly and easily with System Generator. Testing 
and verification is convenient with System Generator, since 
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the data is directly available in the Matlab workspace with all 
the Matlab data visualization tools.  Finally, using System 
Generator inside Simulink for bit and cycle true simulations is 
an order of magnitude faster than running the same 
simulation through an HDL simulator.   It could be argued 
that the decrease in time for testing and verification alone is 
worth the migration to System Generator. We estimate a 2X 
to 4X productivity improvement using System Generator 
over conventional HDL language development methods due 
to System Generator’s design environment and simulation 
speed.  We found the tool provides a nice balance between 
the amount of control capable in the design processes and 
the advanced design entry and data testing properties one 
would expect in a high-level tool. 

 
4. STREAMS-C COMPILER 

 
4.1. Introduction 
 
Approaches for reducing design time for RCC applications 
have ranged from high-level optimization schemes [7] [8], to 
low-level [9], technology-specific, optimized designs. The 
Streams -C approach [10] targets algorithm mapping to 
hardware/software systems. Streams -C provides language-
level support for stream-oriented computation. 
Characteristics of stream-oriented computing include high-
data-rate flow of one or more data sources, fixed size, small 
stream payload (one byte to one word), compute-intensive 
operations, usually low precision fixed point on the data 
stream, access to small local memories holding coefficients 
and other constants, and occasional synchronization 
between computational phases. 

The Streams -C programming model is that of 
communicating processes. A system consists of a collection 
of processes that communicate using streams and signals. 
Processes can run either in software on conventional 
processors (SP) or in hardware on FPGA processors (HP). 
The sc2 synthesis compiler compiles FPGA processes in 
hardware. The compiler translates a subset of C (e.g. 
generalized pointers or recursion are not supported) into 
Register-Transfer-Level (RTL) VHDL that is synthesizable 
on FPGAs. The compiler can pipeline loops, so that the 
generated hardware/software is capable of pipelining a 
streamed computation across multiple FPGAs and the 
conventional processor. In addition, the compiler can unroll 
loops. 

A software library using POSIX threads provides 
concurrent processes and stream support in software. Thus 
the software libraries support a dual function: when all 
processes are mapped to software, the system provides a 
functional simulation environment for the hardware/software 
program. The library also provides a convenient, lightweight 
mechanism for parallel programming in software. When 
processes are mapped to a combination of software and 

hardware, the software libraries are used for communication 
among software processes and between software and 
hardware processes. Hardware libraries for the Annapolis 
Micro Systems (AMS) Firebird board, which contains one 
Xilinx Virtex-E FPGA on a 64-bit PCI bus, are used for 
communication among hardware processes and for the 
hardware side of communication to software processes.  
Figure 5 shows the software development flow for 
applications using the Streams -C compiler. 
 

 
Figure 5. Streams -C compiler structure 

 
4.2. Streams -C: BPSK application mapping to hardware  
 
The Streams -C version of the BPSK algorithm as shown in 
Figure 6, has one software process, host1, and three 
hardware processes, fft, data_run, and squared_data_run. 
The host1 process fills external on-board memory with input 
data and initiates all the hardware processes once the 
memory load is complete. Host1 then waits for an input 
signal from the data_run process to indicate signal detection 
is complete. The fft hardware process reads data from 
memory and computes the Fast Fourier Transform (FFT) of 
the input and the squared input.  The IP core for the FFT 
calculation was inserted into a Streams -C hardware process. 
The data and squared data outputs for a block (N) of FFTs 
are summed and stored in dual-port block ram. A signal 
containing the accumulated sum of the data and the squared 
data is sent to the data_run process and the 
squared_data_run process respectively. These signals 
initiate the other hardware processes to threshold the 
accumulated output data (in dual port ram). In this step the 
data is converted to a “one” if it is above the threshold and a 
“zero” if it is below. The squared_data_run process streams 
the output of the threshold operation to the data_run 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



process. Here the final stage of peak detection is performed 
and a signal is sent to the host1 process in order to read 
back signal detection frequencies from external on-board 
memory. This process repeats for Q iterations. For this 
example, Q = 3 and N = 4.  Figure 7 shows the threshold and 
peak detection Streams -C code in the data_run hardware 
process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Streams -C mapping to hardware  

 
4.3. Evaluation of Streams -C  
 
The Streams -C compiler has a functional simulator that 
allows a software only simulation of the algorithm to check 
for correctness. The Streams -C language code is readable 
and very similar to C-code. This part of the tool is easy to 
use and fairly straightforward. For applications with multiple 
hardware and software processes, bit-accurate functional 
simulation limits the use of bit-widths to 8, 16, 32, and 64, 
however, a simple #ifdef structure allows you to separate 
software-only simulation code from hardware-only synthesis 
code in the process functions. As well, the design space in 
this part of development is flexible, allowing the user to 
iteratively interchange hardware and software processes in 
order to accommodate modifications in the project 
development cycle. 

The next part of the compiler is the hardware generator 
that produces synthesizable RTL. In this phase of the 
process, sections of the peak detection algorithm had to be 
rewritten to generate synthesizable VHDL. Verification of the 
generated VHDL with ModelTech’s Modelsim HDL 
simulator gives a clock-accurate representation of the 
design. The sc2 Streams -C compiler does not generate the 
VHLD behavioral host simulation code so this portion of the 
development is manual and time consuming. Also, the VHDL 
module for the FFT IP core had to be manually inserted into 
the top-level architecture file. The compiler did allow for 
accurate representations of variable data widths in hardware 
synthesis. The hardware libraries support Xilinx Virtex 
FPGAs, but the conversion to a different technology (such 

as Altera) is straightforward through the use of 
configuration statements in the hardware library.  

The Streams -C generated design (see Table 1) used two 
Xilinx Virtex 1000E FPGAs and 14,250 slices, approximately 
60% of the total area with a speed of 60 MHz. (The 
performance results were generated by Synplicity 7.1 and 
Xilinx ISE 5.2i.) The design took approximately 2 weeks to 
complete. The productivity improvement using the sc2 
Streams -C compiler is approximately 2X to 4X over manual 
methods of implementing the application on a RCC system 
due to the fact that changes to the algorithm can be easily 
accommodated and the compiler provides automatic 
mapping to hardware. 
 
#pragma SC memory mem_1 data_out 
# pragma SC memory mem_1 event_data 
# pragma SC memory DP_FFT_1 x 
  
for(j=0; j<Q; j++){ 
// external IP core generates 4 ffts 
// fft IP core 'finished' processing return the sum of 4 ffts  
  sum = sc_wait(input_signal); 
 
// calculate the threshold 
Threshold = (sum/(sc_int24)2048)*(sc_int24)4; 
 
  for(i=0; i<L; i++){ 
   if (x[i] < Threshold )  
    data_out[i] = 0;  
   else 
    data_out[i] = 1; //strong value 
} 
// check for BPSK 
// if squared_data = 1 check six frequency bins of the 
// non squared data for a “1”  
  for(j=0; j<L; j++){ 
    squared_data = sc_stream_read(input_stream); 
    if (squared_data == (sc_int2)1){     
       tmp0 = data_out[j]; 
       tmp1 = data_out[j/(sc_int32)2 + (sc_int32)1]; 
       tmp2 = data_out[j/(sc_int32)2 - (sc_int32)1]; 
       tmp3 = data_out[(FFTSize-j)/(sc_int32)2]; 
       tmp4 = data_out[(FFTSize-j)/(sc_int32)2 + (sc_int32)1]; 
       tmp5 = data_out[(FFTSize-j)/(sc_int32)2 - (sc_int32)1]; 
       check = sc_catenate(tmp5,tmp4,tmp3,tmp2,tmp1,tmp0); 
        if ((sc_int12)check != (sc_int12)0){ 
           event_data[k] = (sc_int32)j; //peak detection 
           k++; 
} 
 Figure 7. Streams-C example code 
 
5. SUMMARY 
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We investigated two high-level reconfigurable computing 
system development tools for mapping our BPSK algorithm 
to hardware, the Xilinx System Generator Tool, and the sc2 
Streams -C compiler. Each tool has a useful functional 
simulator, and generates synthesizable hardware. Streams -C 
has an automatic target hardware board and produces the 
necessary framework to directly synthesize a design to this 
board and additional targets may also be defined.  System 
Generator on the other hand, does not target a special-
purpose board, thus, requiring manual mapping to a board. 
Both tools required “debugging”, as some of the core 
components in System Generator did not function 
accurately, and some of the generated VHDL from the 
Streams -C compiler was not accurate. Clock accurate 
hardware simulation was cumbersome in Streams -C because 
the HDL host simulation code must be written by hand.  In 
most cases System Generator clock-accurate simulation was 
easy, although it took time to learn which blocks had bugs 
(i.e. did not produce accurate hardware). In terms of 
performance, System Generator produced a design capable 
of running at a faster speed than the design produced by 
Streams -C, and therefore a design capable of more 
processing in the same amount of time. (This is attributed to 
the native use of pre-optimized cores in System Generator, 
whereas Streams -C relies on automatically generated VHDL). 
The Streams -C design, however, was smaller than the 
System Generator design, which would allow for smaller, less 
expensive FPGAs to be used.   
 An advanced tool requires a certain amount of “learning 
curve” and this coupled with the maturity of the tool can 
lead to a considerable amount of lost productivity. Over 
time, we found productivity is 2X to 4X higher compared to 
manual HDL design method.  However, the tools have 
different trade-offs between placement speed and area, 
utilization of specific FPGA technology, and ease of use.  
Developers wishing to convert HDL development to a high-
level tool should carefully examine their priorities on these 
issues before choosing a tool. 
 

Table 1. Comparison of Performance Results 
 Time to  

complete 
(weeks) 

Area 
(Slices)   

Speed 
 (MHz) 

System 
Generator 

2 - 3 80% 70 

Streams -C 
Compiler 

2 60% 60 
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