
 
SDR AND THE SCA: A WAVEFORM IMPLEMENTATION CASE STUDY 

 
Rick Woodring; Jeremy Kneuper  

(Nova Systems Solutions; Cincinnati, OH, USA; {rwoodring,jkneuper}@nsseng.com)  
 

 
ABSTRACT 

 
The Software definable radio (SDR) and the Software 
Communications Architecture (SCA) are poised to reshape 
the communications industry by replacing proprietary 
systems  with a standardized, open architecture capable of 
integrating legacy, current, and future technology. Under the 
SCA, developers will be able to design and implement 
complete waveforms without requiring access to expensive, 
limited production radio hardware.  System integrators will 
also be able to combine small components from many 
independent vendors to create fully functional waveform 
applications. 
 Nova Systems Solutions (NSS), a division of Nova 
Engineering, has collaborated with the thought leaders in the 
SDR industry. As a result, NSS is implementing an SCA-
compliant, multilayer, shaped offset quadrature phase shift 
keyed (SOQPSK) waveform to serve as an example to 
waveform developers. The waveform demonstrates an SCA 
compliant design and the operational requirements placed on 
a waveform by the standard. Based on the experience and 
insight gained during the design and initial implementation 
of this waveform, this  paper discusses the steps used in a 
successful design process as well as suggestions to assist 
with implementation. 
 

1. INTRODUCTION 
 
The SCA specification establishes a hardware-independent 
development framework with baseline requirements for the 
Joint Tactical Radio System (JTRS) software definable 
radios. These requirements are comprised of interface 
specifications, application programming interfaces (APIs), 
behavioral specifications, and rules. The goals of these 
specifications are to ensure the portability and 
configurability of the software and hardware, and to ensure 
interoperability of products developed using SCA [1]. 
 The SOQPSK waveform is being developed under the 
Wideband Intra-battlegroup Communications (WIC) Small 
Business Innovation Research (SBIR) program sponsored 
by the Space and Naval Warfare Systems Command 
(SPAWAR). The SCA compliant SOQPSK waveform was 
originally targeted for operation within the JTRS Joint 
Technology Laboratory (JTeL) Waveform Test Environment. 

To make the waveform mo re accessible to developers, a 
custom user interface is also being developed. 
 To be SCA compliant, the radio must have a Core 
Framework (CF) which is an operating environment on which 
waveforms and other radio applications operate. The CF 
provides standard services used by waveform applications 
and an abstract interface to the underlying software and 
hardware of a radio. These services reduce the complexity of 
the implementation by bundling specific tasks such as file 
system access, logging, and application installation. 
Without the CF, the user would have to create each function 
and interface, which can prove to be extremely tedious and 
time consuming. As shown in Figure 1, the CF provides an 
abstraction between any SCA client software and the 
underlying hardware and software. 
 The SCA provides the user with the ability to combine 
and simplify common tasks such as construction, 
initialization, virtual connection, execution, release, and 
destruction of components and waveforms . The SCA allows 
the user to develop the radio software only once, and then 
port that software to other compliant hardware radio 
platforms. This portability eliminates re-development of the 
same software by multiple vendors, reducing acquisition 
cost and allowing the software to integrate with other SCA 
compliant applications. The portability afforded by a 
selection of SCA compliant components allows the user to 
“pick and choose” hardware and software from multiple 
vendors to be implemented on the radio. This 
interchangeability of SCA compliant components allows a 
“best of breed” evolution to occur. 
 The SOQPSK waveform is a multi-layer waveform 
consisting of network, data link control (DLC), and physical 
layers in both upstream and downstream channels . The 
implementation also includes a data source, data sink and 
channel simulator to simulate operational conditions. 
 

2. KEY TECHNOLOGIES 
 
Implementing the SOQPSK waveform involved the use of 
several key technologies, particularly Unified Modeling 
Language (UML), Interface Definition Language (IDL), 
Common Object Request Broker Architecture (CORBA), and 
eXtensible Markup Language (XML). 
 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



   

  

Network Stacks & Serial Interface 
Board Support Package (Bus Layer) 

Black Hardware Bus   

CF Services & 
Application 

CORBA ORB 
& Services  

(Middleware) 

Network Stacks & Serial Interface 
Board Support Package (Bus Layer) 

Core Framework IDL 

RF   

Modem 
Components 

Link, Network 
Components 

Security 
Components 

 I/O 
Components 

MAC API LLC/Network API LLC/Network API 

Link, Network 
Components 

Security API I/O API 
(“Logical Software Bus” via CORBA) 

      Red Hardware Bus   

 Operating System  

CF Services & 
Application 

CORBA ORB 
& Services 

(Middleware) 

 Operating System  

 
Figure 1: Software Structure of an SCA Radio. SCA separates waveform into components based on the Open Standards Interconnect 
(OSI) model. All communication from waveform components to the ORB and CF occur through CORBA requests [1]. 
 
 UML is the industry standard language for specifying, 
visualizing, constructing, and documenting the artifacts of 
software systems . Standardized by the Object Management 
Group (OMG), UML simplifies the complex process of 
software design by making a graphical “blueprint” for 
construction. This blueprint represents the SCA interfaces, 
scenarios, use cases, and collaboration diagrams  [1]. Figure 
2 shows an example of a UML class diagram. 
 From each SCA interface defined in UML, an IDL 
representation can be derived. Like UML, the IDL is 
programming language independent, but IDL can be mapped 
into an implementation language such as C++, Java, Ada, 
and many others [1]. An IDL compiler supplied with the 
CORBA implementation performs the mapping. 
 In addition to IDL compilation, CORBA acts as the 
middleware between software components in a distributed 
environment. CORBA essentially establishes and controls 
interfacing between components and layers within an SCA 
application. CORBA is the “glue” that binds the SOQPSK 
waveform together. 
 The SCA uses XML to define a profile for the domain in 
which waveform applications can be managed. When 
creating an XML document, rather than drawing from a finite 
set of predefined elements, the developer creates unique 
elements and assigns them arbitrary names—hence the term 
“extensible.” The user can therefore use XML to describe 
virtually any type of document, from a musical score to a 
software defined radio. However, for SCA applications, this 
extensibility is limited to the SCA-defined Document Type 
Definitions (DTD). The DTD files specify a set of rules for 
the structure and content of an XML document [2]. The 
DTD files list the elements, attributes, notations, and entities 
contained in a document, as well as their relationship to one 
another. 

3. DESIGN PROCESS 
 
NSS follows a structured methodology from conception 
through production to ensure the reliable execution of the 
waveform design. This process typically brings together 
designers, test engineers, and the customer at milestone 
intervals to review progress and coordinate execution. The 
documents produced in this design process contain the 
information required by JTeL to perform SCA compliance 
testing. During compliance and portability testing, JTeL 
representative will use the documents as directed in the 
JTRS waveform test and evaluation process. 
 The SOQPSK waveform design began with the creation 
of the System Requirement Specification (SRS). The SRS 
defines all testable requirements of the complete waveform, 
such as infrastructure and node operations. For this 
waveform, the SRS was written internally and approved by 
the customer. To complete the requirements definition 
process, waveform developers and JTeL representatives 
conduct a system requirements review. 
 After approval of the SRS, the Waveform Design 
Specification (WDS) was created. The WDS describes 
behavior of the complete waveform and specifies an 
implementation solution for each system requirement. The 
WDS also decomposes and describes the waveform 
application in terms of its constituent components. In the 
case of the SOQPSK waveform, those components are 
separated into data processing and waveform exercising 
components. The data processing components consist of an 
assembly controller, network down, network up, DLC down, 
DLC up, and physical modem. The exercising components 
include a data source, data sink, and channel simulator. The 
waveform exercising elements are discussed more in Section 
5. To aid in the process of developing solutions for each 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



requirement, software structures and types are defined, and 
state machine diagrams are generated to describe activities. 
At a preliminary design review, developers and JTeL 
representatives evaluate the WDS on design, risk, test 
strategies, requirements adherence, and cost. 
 The software requirements document (SRD) includes 
detailed use case scenarios for all software requirements 
within the waveform. Based on the actions required of each 
component in the use cases, the developer decomposes the 
system requirements from the SRS into unit requirements for 
each waveform components. These component level 
requirements provide a roadmap for implementation of each 
component and ensure that the collection of waveform 
components fulfill all system requirements. A JTeL review of 
the SRD is not required. 
 The final step in the waveform design process is the 
Software Detailed Design (SDD) document. The SDD 
contains UML designs of each of the system components, 
along with detailed descriptions of each class. More 
importantly, the SDD describes in detail how all component 
requirements from the SRD will be fulfilled in the final 
software implementation. The SDD is reviewed by 
developers and JTeL representatives at a critical design 
review, where the design is examined for requirement 
satisfaction, risk assessment, and supportability.  
 The last document included in the design of the 
SOQPSK waveform is the Formal Qualification Test (FQT). 
The FQT is based on the SRS and can be developed in 
parallel with the WDS and SDD. The FQT defines a 
verification test for every requirement established in the 
SRS. Prior to testing, a JTeL representative must review the 
FQT procedures to ensure the accuracy of the tests. The 
JTeL representative must also witness the successful 
completion of the FQT to verify that the waveform conforms 
to the system requirements. 
 

4. WAVEFORM CONSTRUCTION 
 
The SOQPSK waveform designed and implemented in this 
study provides a reference example for developers designing 
multi-layer waveforms. To minimize the amount of waveform 
specific code included, this design sacrifices functionality 
for clarity of implementation. By limiting the quantity of 
waveform processing code included, developers can more 
easily separate the code required to make the waveform SCA 
compliant. The ability to distinguish between these different 
types of code will make this implementation a valuable 
resource to developers implementing SCA designs for the 
first time. Figure 3 shows the way in which the waveform 
components are connected.  
 The assembly controller provides a single interface 
through which the CF and client applications can access the 
waveform. The assembly controller is responsible for 
implementation of the runTest, start, stop, configure, and 

query operations of the CF::Resource interface for the 
waveform. When a request is received, the assembly  
controller may delegate the request to another component of 
the waveform. 
 The data I/O layer of the SOQPSK waveform contains 
two components that exchange data with the network layer 
of the waveform. The data source component generates 
packets of data and then pushes the packets to the 
downstream network interface for transmission. The data 
sink accepts packets of data that have been received and 
processed by the upstream portion of the waveform from the 
network layer. Both components of the data I/O layer include 
the option to log packet contents to files. 
 The network layer contains upstream and downstream 
components that perform network layer operations on all 
packets processed. The downstream component attaches 
source and destination IP addresses to the front of all 
packets and also maintains a history containing the 
destination of the last ten packets sent. The upstream 
component reverses the operations of the downstream 
component by removing the IP addresses from the packet 
and recording the source IP to a history. In the example 
implementation, the network layer does not provide routing, 
multicasting, or relaying capabilities; however, additional 
capabilities could be added by replacing the example 
components with more complete components that implement 
the same data transfer interface. 
 The DLC layer also contains an upstream and a 
downstream component. Both components identify packets 
based on a unique packet sequence number and checking 

Resource
identifier : string

start() : void
stop() : void

<<Interface>>

LifeCycle

initialize() : void
releaseObject() : void

<<Interface>>

Port

connectPort(connection : Object, connectionId : string) : void
disconnectPort(connectionId : string) : void

<<Interface>>

PortSupplier

getPort(name : string) : Object

<<Interface>>
PropertySet

configure(configProperties : Properties) : void
query(configProperties : Properties) : void

<<Interface>>

TestableObject

runTest(testid : unsigned long, testValues : Properties) : void

<<Interface>>

Figure 2: UML class diagram of SCA Resources and Port 
interfaces. SCA waveform developers are only required to 
implement the CF::Resource and CF::Port interfaces 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



for corruption with a 16 bit cyclic redundancy check (CRC). 
The downstream component attaches a CRC value and a 
sequence number to the front of each packet. The upstream 
component removes the values attached during 
transmission, validates the CRC of the packet, and records 
the sequence number. The DLC layer does not implement 
error correction, flow control, or packet retransmission. As 
with the network layer, additional functionality can be added 
by updating the implementation of this layer. 
 The physical layer contains three components: a bi-
directional modem component that interfaces with adjacent 
layers and two coprocessor components that perform 
modulation and demodulation. When a packet is received on 
the downstream interface, the data is scrambled and 
SOQPSK modulation is performed. The resulting in-phase 
and quadrature (IQ) sample pairs are then pushed to the 
waveform output. When the physical layer is not 
transmitting data, it searches the IQ pairs entering the 
upstream interface for the start of a new packet. When a new 
packet is detected, the physical layer demodulates and 
descrambles the data. The recovered packet is then pushed 
to the upstream interface of the DLC layer. 
 The channel simulator consists of one element that 
receives IQ data from the waveform output and routes the  

data to the input of the waveform. The channel simulator is 
also capable of adding a combination of propagation delay, 
frequency offset, and additive white Gaussian noise 
(AWGN). These components form the full SOQPSK 
waveform implemented for this case study.  
 

5. WAVEFORM IMPLEMENTATION  
 
Prior to implementing the multi-component SOQPSK 
waveform, a generic waveform application containing only 
an assembly controller was created. The generic waveform 
was used to test the operation of the CF and assist in writing 
installation and debugging scripts. After successfully 
demonstrating the installation, operation, and uninstallation 
of a single component waveform in the CF, two additional 
components , a data source and data sink, were added to the 
waveform. To minimize the potential for configuration errors, 
the new components were added to the waveform without 
connecting any component ports . The waveform was then 
used to demonstrate the installation and instantiation of a 
multiple component waveform. After verifying that the CF 
loaded and started the waveform as expected, the 
component ports were connected to the rest of the 
waveform. The these ports, the new components were then 
exercised and tested. Additional components were added to 
the waveform in the same manner, one layer at a time.  
 As mentioned previously, the reference implementation 
of the waveform includes components that would normally 
not be included as part of the waveform. By default, the data 
source, data sink, and channel simulator components are 
included in the example waveform to simplify the process 
required of the end user to start and exercise the waveform. 
Alternatively, these components could be removed from the 
waveform and made into applications of their own.  
 Because of the component based nature of SCA 
waveforms, the extra components are easily moved from the 
waveform to a new application with only minor changes to 
the XML descriptors. To remove a component from the 
waveform, the component’s implementation and 
instantiation lines must be removed from the software 
assembly descriptor (SAD) XML file for the waveform. Any 
port connection involving the component being removed 
must also be updated in the SAD. After removing the three 
extra components, the waveform can be used as expected to 
connect a data I/O interface to a transmission interface. 
 

6. LESSONS LEARNED 
 
While implementing the SOQPSK waveform, several 
unforeseen problems were encountered that could have 
been avoided with additional planning or precautionary 
measures during the initial waveform design. This section 
discusses potential waveform design and implementation 
pitfalls  of circular references in IDL, code redundancy, user 

Figure 3: Waveform component structure. The assembly 
controller configures waveform components via the 
CF::Resource interface. Data is transmitted through real-time 
interfaces defined by each component. 

CF::Resource

Real-Time Data

LEGEND

Assembly
Controller

DLC
Upstream

Network
Upstream

DLC
Downstream

Network
Downstream

Data
Sink

Data
Source

Physical
Modem

Channel
Simulator

Physical
Demodulator

Physical
Modulator

Client

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



interface development, and incremental testing. Suggestions 
to avoid these problems in future development are also 
proposed. 
 One troublesome situation encountered during 
waveform implementation were circular references in the IDL. 
Initially, Rational Rose generated all the waveform IDL based 
on the UML model created during the system design phase 
of the development. Upon initial visual inspection, the IDL 
appeared to be correct, but it failed to compile. A closer 
inspection revealed that the way the IDL was separated into 
files caused file 1 includes file 2, file 2 includes file 3, and 
file 3 includes file 1 creating a circular reference. Because 
the language provides no measures to prevent compilation 
of an IDL file multiple times, these scenarios created an 
infinite loop for the compiler.  
 In order to correct the circular references, the separation 
of interfaces in the IDL was broken down from one IDL file 
per layer to several files. For each layer, the IDL was 
separated into real time and non-real time interfaces for 
upstream and downstream components, and a single file that 
holds constants and type definitions for the whole layer. In 
order to reduce the number of IDL files included, complex 
structures based on type definitions from several layers were 
replaced with standard types. The most common example of 
converting structures to an array of standard types is the 
payload parameter of the pushPacket operation. For 
instance, the payload parameter was originally a structure 
containing two IP addresses and an octet sequence with a 
maximum length of 1500. To avoid the need for other layers 
to understand the contents of a DLC payload, the parameter 
was modified to be only one octet sequence with a maximum 
length of 1508, which corresponds to four octets for each IP 
address and 1500 for the data. 
 Another important waveform development practice is to 
place the implementation of frequently used interfaces such 
as CF::Resource and CF::Port (shown in Figure 2) in a 
common base class. For example, rewriting the 
implementation of a common interface every time it is used 
can create unnecessarily long code that is difficult to 
manage. By placing the implementation in a base class that is 
inherited by the component classes, the default behavior of 
all resources can be the same. Restricting an implementation 
to one class also makes updates easier because the change 
is required in only one place rather than in every component. 
 Code reuse can also decrease the implementation time of 
a waveform in the XML descriptors. Every CF::Resource 
component within a system must have a software package 
descriptor (SPD), software component descriptor (SCD), and 
properties file (PRF). These files have a high percentage of 
redundancy from one component to another. Consequently, 
writing XML files from scratch for each component of a 
waveform involves an unnecessary amount of document 

reconstruction. By creating a generic component such as the 
one initially used to test the operation of the CF, a generic 
CF::Resource component and a corresponding set of XML 
files can also be validated. The generic component and XML 
files can then serve as the base for creation and testing of 
XML for all future components.  
 Another implementation detail that is not immediately 
apparent from the SCA specification is that the user interface 
should not be part of the waveform. When creating a custom 
software interface for a waveform, it may be tempting to 
include a user interface as part of the waveform. This, 
however, is not necessary. The user interface should exist 
independently from the waveform and only interface with the 
waveform via standard SCA methods. An important 
implication of including the user interface as a waveform 
component is that the interface must be a CF::Resource and 
can only be used once the waveform has been started. A 
second implication is that the interface must have an ORB 
accepting requests , rather that just acting as a client.  
 An alternative to having the user interface loaded and 
connected to the waveform automatically is to have the user 
interface be a client to the CF::DomainManager as well as to 
the application. As a client to the CF::DomainManager, the 
user interface is capable of requesting the list of instantiated 
applications and searching for the appropriate one. This 
solution allows independent development of the waveform 
and user interface and ensures that other user interfaces can 
also communicate with a waveform.  
 

7. CONCLUSION 
 

Through a structured design process compatible with the 
JTRS waveform testing and evaluation process, Nova 
Systems Solutions has designed a multi-layer SOQPSK 
waveform. This waveform provides an example 
implementation of both waveform exercise and bit 
processing components operating within an SCA core 
framework. The bit processing components developed in 
this case study do not contain complete layer 2/3 
functionality, but serve as placeholders where more complex 
implementations may be added later. Through development 
of this waveform, NSS has encountered and addressed 
implementation problems. The waveform will also serve as a 
reference to future waveform developers. 
 

8. REFERENCES 
 
[1] Software Communications Architecture Specification, MSRC-

5000SCA, V2.2, November 2001. 
[2] Joint Tactical Radio Systems SCA Developer’s Guide, 

Contract No. DAAB15-00-3-0001, V1.1, June 2002 

 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved


