A I R N E T

Adaptive Array SDR Base Station for Commercial Cellular Applications

SDR Forum Technical Conference --- November 17, 2003 Michael Komara, Terry Williams --- AirNet Communications Corp. Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Why Adaptive Arrays?

 Operators need more capacity to support new customer usage patterns:

- Higher minutes of use per customer.
- Wireline substitution.
- High-speed data.

 Some urban areas are already running out of capacity:

- No new frequencies available.
- Must get more capacity from existing frequencies.
- Adaptive antennas dramatically improve capacity:
 - Narrow antenna beam "follows" the subscriber.
 - Dramatically reduces co-channel interference.
 - Significantly increases system capacity.

Adaptive Array Technology

- Multiple transmit/receive antenna elements:
 - Advanced signal processing exploits spatial characteristics of signals.
 - Provides dynamic gain and interference mitigation for each subscriber... every frequency and every time slot.
- Spatial Optimization Multipath environment:
 - Receive: Maximizes signal reception by weighting energy arriving from several directions.
 - Transmit: Transfers energy in different spatial directions such that energy is concentrated at the mobile receptor.
 - Concept of a "beam" in a traditional sense does not apply.
- Downlink solution is derived and continuously updated using uplink measurements.
- Improves C/I without the "diminishing returns" of static sectorization:
 - Static sectorization has poor trunking efficiency.
 - Static sectorization has sector overlap.
 - Static sectorization has increased "soft" handover.

Adaptive Array Enhances Signal Quality

AIRNET

Benefitis of Adaptive Array

AIRNET

<u>Feature</u>	<u>Benefits</u>
Signal Gain – Inputs from multiple antennas are combined to optimize the power required to maintain a given level of coverage.	Better Range/Coverage – Focusing the energy increases base station range and coverage. Lower handset power requirements translate into greater battery life and smaller size.
Interference Rejection – Antenna pattern nulls can be generated toward co-channel sources, improving the C/I ratio of the received signals.	Increased Capacity – Lowering interference throughout the network leads to higher capacity and increased frequency reuse patterns.
Spatial Diversity – Composite information from the array is used to minimize fading and other undesirable effects of multipath propagation.	Multipath Optimization – Can reduce the effective delay spread of the channel, allowing higher bit rates to be supported.
Power Efficiency – minimizes the amount of broadcasted energy focusing multiple antenna elements.	Reduced Expense – Lower amplifier costs, power consumption, and higher reliability will result.

SuperCapacity BTS – Powered by ArrayComm Intellicell Technology

- Broadband SDR base station is an enabling technology.
- Addition of adaptive array software to base station DSP arrays.
- ArrayComm IntelliCell[™] adaptive algorithms:
 - Weighting and combining done digitally at base band.
 - No expensive RF hardware and RF plumbing.
- Substantially higher performance than competing solutions.
- Utilizes off-the-shelf antenna elements.
- Built-in... NOT Bolted-on.

Narrowband – Unsuitable for Adaptive Arrays

• Standard specific hardware and software.

- Limited programmability.
- · Lots of components.
- Lossy cavity combiners, cables, etc.
- Only way to implement adaptive solution is to add expensive hardware appliqué.

Α

IE.

T

- · Dramatic increase in RF component count.
- · More expensive and less reliable.

•

The Need for Calibration

 All TX and RX signal paths have amplitude and phase offsets at installation and exhibit some drift over time, temperature, and voltage.

- Different cable lengths, path delays, antenna placements, SAW filter delays vs. temperature.
- Receive-only systems do not need calibration if the direction-of-arrival is not required.
- Both TX and RX paths must be calibrated if the RX weights are used to calculate the TX weights.
- Calibration of all paths to better than 5 degrees and 0.1 dB of accuracy is desired.
- Digital compensation is done at baseband for the full TX and RX paths from antenna to DSP.

Automatic Calibration

- Isolated "test mobile" cabled to a near-field calibration antenna or coupler assembly.
- A periodic call to the test mobile allows calibration of uplink RX and downlink TX paths.
- Base station forms transmit nulls at the calibration mobile and receives uplink data from mobile.
- The AA BTS system auto-calibrates periodically.
- Transparent to normal basestation operation borrowing unused time slots.
- Digitally corrects for entire TX and RX paths from beyond the antennas to the DSP.

Capacity Increase Summary

AIRNET

• 5+5 MHz spectrum allocation assumed for all examples

<u>Site</u> Configur ation	Tri- Sectored	Tri- Sectored	Tri- Sectored	Tri- Sectored	Omni	Omni	Tri- Sectored	Tri- Sectored	Omni	Tri- Sectored
<u>Method</u>	Non- Hopping	Freq Hopping	Freq Hopping	Freq Hopping	Adaptive	Adaptive- FH	Adaptive- FH	Freq Hopping	Adaptive	Adaptive
<u>Traffic</u> <u>Reuse</u>	4/12 Reuse	1/3 Reuse	MRP Reuse	1/1 Frac Reuse	2 Reuse	1 Reuse	1/1 Frac Reuse	1/1 Frac Reuse	1 Reuse	1/1 Frac Reuse
<u>AMR</u>	No AMR	No AMR	No AMR	No AMR	No AMR	No AMR	No AMR	With AMR	With AMR	With AMR
Erlangs per cell (2% blocking)	9	11	12	16	62	88	63	30	128	91
Erlangs per site (2% blocking)	27	33	36	48	62	88	189	90	128	273
Capacity Improvem ent over non-FH sectored	0%	22%	33%	78%	130%	226%	600%	233%	374%	911%
Capacity Increase over non- FH sectored	1.0x	1.2x	1.3x	1.8x	2.3x	3.3x	7.0x	3.3x	4.7x	10.1x
Capacity Improvem ent over FH sectored				0%	29%	83%	294%	88%	167%	469%
Capacity Increase over FH sectored	AirNiot/Arro		(hite Paper	1.0x	1.3x	1.8x	3.9x	1.9x	2.7x	5.7x

Capaciiy Improvemeni Techniques - Comparisons

 Each of these is complementary – benefits are additive.

- AirNet solution supports all three:
 - Also compatible with DTX and power control.
- <u>Sectored AA w/AMR provides:</u>
 - 3x capacity over conventional sectored FHOP with AMR.
 - 10x increase in capacity compared to conventional sectored w/o FHOP.

"Switched beam" smart antenna solutions only offer modest capacity gains with significant added hardware.

Packet Data Limitations with Frequency Hopping

GSM Frequency Hopping:

- Distributes noise from low C/I cells to high C/I cells.
- Averages C/I of the network.
- Improves voice quality of low C/I cells.
- GPRS and EDGE have much lower tolerance of noise compared to voice:
 - FHOP will degrade C/I -- worse BER of majority of cells.
 - Can trigger excessive data block re-transmissions due to bit error distribution amongst users.
 - Most vendors recommend putting GPRS/EDGE on BCCH carriers only.
- Can put GPRS/EDGE on any carrier with AirNet solution!

Up to 14x Sites Required Using Legacy Systems for EDGE

AIRNET

el-110	ITE			Required		Dense	. 19 m C	1623	
tt w S		Data	Data Rate	Co-		Urban	Suburban		
		Rate per	o per	Channel	Deficit	Coverage	Coverage	Dense	Suburban
-		time slot	Carrier	C/I	from GSM	Area	Area	Urban Sites	Sites
Modulation	Coding	(kbps)	(kbps)	(dB)	9 dB C/I	(x GSM)	(x GSM)	(x GSM)	(x GSM)
GSM	CSD	9.6	57.6	9	0	100.0%	100.0%	100%	100%
GPRS	CS-1	9.05	72.4	13	4 21	65.2%	61.9%	153%	162%
GPRS	CS-2	13.4	107.2	15	e 06 💙	52.7%	48.7%	190%	205%
GPRS	CS-3	15.6	124.8	16	7	47.3%	43.2%	211%	231%—
GPRS	CS-4	21.4	171.2	19	10	34.4%	30.1%	291%	332%
EDGE	MCS-1	8.8	70.4	8		100.0%	100.0%	100%	100%
EDGE	MCS-2	/ 11.2	89.6	10	14	89.9%	88.7%	111%	113%
EDGE	MCS-3	14.8	118.4	15	6	52.7%	48.7%	190%	205%
EDGE	MCS-4	17.6	140.8	20	11	30.9%	26.7%	324%	375%
EDGE	MCS-5	27.2	217.6	14	5	58.6%	54.9%	171%	182%
EDGE	MCS-6	29.6	236.8	17	8 8	42.5%	38.3%	235%	261%
EDGE	MCS-7	44.8	358.4	23	14	22.4%	18.7%	446%	535%
EDGE	MCS-8	54.4	435.2	28	19	13.1%	10.2%	763%	980%
EDGE	MCS-9	59.2	473.6	31	22	9.5%	7.1%	1053%	1408%

•GSM900 Dense Urban and Suburban In-building models used •Derived from ETSI SMG2 Studies

Non-Starter

Adaptive Array Data Advantage IE. T 500.0 450.0 400.0 350.0 300.0 kbps 250.0 **AirNet AA Improvement** Up to 5x the Data Rate 200.0 Traditional 150.0 Adaptive Array 100.0 50.0 0.0 0% 20% 40% 60% 80% 100% 120% **Cell Area (from center)** Assumes GSM-900 Dense Urban Propagation Model

November 17, 2003 Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

٠

Adaptive Array Summary

AIRNET

- AirNet's AdaptaCell base station is the only broadband software-defined radio technology in commercial service:
 - Enabling technology for adaptive array.
- AirNet's AdaptaCell base station united with ArrayComm's IntelliCell AA software provides the only cost effective solution to achieve maximum network capacity.
- Dramatic voice capacity and data throughput improvements:
 - 3 to 10 times the voice capacity.
 - Up to 5 times higher packet data throughput.
 - Up to 6 times fewer sites.
- Will help in migration from IS-136 to GSM by reducing spectrum requirements.
- Utilizes standard antenna elements.