
A HANDHELD SOFTWARE RADIO BASED ON THE IPAQ PDA: SOFTWARE

Andrew Chiu (Vanu, Inc., Cambridge, MA, USA; agchiu@vanu.com);
Jessica Forbess (Vanu, Inc., Cambridge, MA, USA; jforbess@vanu.com);

ABSTRACT

Vanu, Inc. has demonstrated analog FM two way radio and
digital APCO Project 25 waveforms on an iPAQ-based
handheld software radio. The iPAQ contains a low-power
206 MHz StrongARM processor that is used for all signal
processing. This paper explains the software approaches
used and lessons learned from implementing the waveforms
on this platform. Commercial and public safety applications
of the handheld are also described.

1. INTRODUCTION

The public safety community in the United States and
elsewhere faces a serious interoperability problem. Different
agencies operate radio systems with incompatible
frequencies and/or waveforms. Within a particular agency,
newly acquired advanced digital radios may not
communicate with legacy analog radios.
 Vanu, Inc., in partnership with General Dynamics
Decision Systems, has developed a handheld software radio
prototype to address this interoperability problem. The
handheld currently runs analog FM two way radio and the
digital APCO Project 25 waveform and can tune to any
frequency between 100 MHz and 500 MHz. By applying
the Vanu Software Radio approach, the development time
and cost was greatly reduced [1].
 This paper describes the background on the handheld
prototype, the Vanu Software Radio approach to software
design, the experience gained from the prototype
implementation, and the performance of the software.

2. SYSTEM DESCRIPTION

The handheld system consists of three components: the
iPAQ, the FPGA interface card, and the radio transceiver.
The block diagram is shown in Figure 1. The iPAQ
contains a 206 MHz StrongARM processor running Linux.
All of the signal processing software is implemented as an
application-level program written in C and C++ running on
top of Linux. By architecting the system in this way using a
high level language, standard operating system, and a
general purpose processor, the effort required to port to the
handheld platform was very low.

 Traditional SDR Vanu Software Radio

RF Transceiver

GPP

DSP or FPGA

Antenna

Audio, etc Control

RF samples

RF Transceiver

FPGA

Antenna

Audio, etc

RF samples

GPP (iPAQ)

General purpose
processor

Figure 1: A comparison of the traditional software defined radio
architecture and the Vanu Software Radio architecture

The hardware subsystem, including the radio transceiver
and FPGA interface card is described in a separate paper
[2].

3. SOFTWARE ARCHITECTURE

Figure 2: Vanu Software Radio software architecture

The Vanu Software Radio layered architecture, as shown in
Figure 2, has four components. The lowest layer is the
operating system, which is the interface to the hardware.
The operating system is critical to the Vanu Software Radio
approach because it allows the waveform software to be
hardware-agnostic and thus, portable. The operating system
chosen for the handheld system is Linux; however, any
POSIX operating system may be used.
 Two of the remaining components are signal processing
components. The library of modules contains the core
signal processing algorithms for operations such as filtering,
FM modulation, and Viterbi decoding, as well as the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

specialized waveform-specific modules. These modules are
plugged together through the Sprockit™ middleware layer,
which provides highly efficient data movement.
 The control component consists of a runtime system
that takes a description of the radio, selects the proper
modules from the signal processing library, sets its
parameters, and makes the high-speed data connections
between the modules and the lower-speed control
connections to the application. In addition to the runtime
system, the control component also contains the user
interface.

4. HANDHELD SOFTWARE IMPLEMENTATION

The handheld software radio currently supports two
waveforms: half-duplex analog FM, and digital APCO
Project 25. The analog waveform is a 12.5 KHz wide FM
modulated waveform with Continuous Tone Coded Squelch
System support. This is the legacy waveform that is used by
most of the public safety community.
 The second supported waveform is APCO Project 25.
Project 25 is a digital waveform that uses CQPSK
modulation running at 9.6 Kbps and the Improved Multi-
Band Excitation vocoder running at 4.4 Kbps [3]. Project 25
is also a half-duplex waveform, and it is the waveform that
many public safety agencies are upgrading to.
 The handheld software radio is able to switch between
the two half-duplex waveforms, just by changing the
software. While this is similar in functionality to existing
Project 25 products, the Vanu, Inc. implementation has
major advantages. First, the handheld software radio has a
wider frequency range, enabling it to interoperate with a
greater number of existing radio systems. Second, and more
importantly, the software approach allows the handheld to
be upgraded with new waveforms. By adding other low
bandwidth waveforms such as IS-136 (North American
TDMA cellular) and CDPD, the handheld software radio
can now serve as a cell phone and a mobile data device in
addition to its original function as a two way radio.

5. VANU SOFTWARE RADIO APPROACH

The Vanu Software Radio approach depends on modularity,
hardware independence, and software portability. When
developing to these three key principles, waveforms and
systems can be designed and built much more quickly, for
less cost, and with fewer bugs.
 With modular software, the waveform processing
software can be easily configured to perform partial
processing on a signal. For example, to investigate an audio
problem on a received FM signal, the signal processing
chain can be altered so that output of the FM demodulator is
saved to disk instead of passed down the chain to the de-
emphasis filter. This technique is extremely useful, as it

allows the engineers to access the internal values in the
exact location in the system that they are debugging. Also,
each signal processing function is implemented as a separate
module with standard interfaces, so preexisting modules
developed for different waveforms may be reused for a new
waveform. Since these modules have already been written
and tested, development and debugging time is reduced.
These standard interfaces also make it easy to change the
algorithm used in signal processing chains. Multiple
algorithms for a particular function, such as FM
demodulation, may exist as separate modules, and it is very
easy to change algorithms and test them against live signals
just by changing the module that is active.
 With portability and hardware independence, waveform
software can be first written for an architecture that has a
better development and testing environment. Once the
waveform is tested, it can then be ported to the target
platform. This was the approach taken to develop the
handheld software radio prototype.

6. IMPLEMENTATION EXPERIENCE

All of the waveform software was first developed on the
x86 platform. In fact, all of the waveform software on the
x86 was complete and tested before the handheld project
began. Both the FM and Project 25 waveforms were
developed on x86-based Linux workstations, using the
extensive set of development and debugging tools available
on that platform. The workstations are fully functional
radios, utilizing PCI A/D and D/A cards connected to
external analog receivers and transmitters. This system also
serves as a debugging tool that can capture signals off the
air or send known signals to the device under test.
 With the existing waveform software developed for the
x86 as the starting point, there was a two step process to
port to the iPAQ. The software was first ported to a
StrongARM-based desktop computer. While the CPUs in
the iPAQ and this desktop computer were identical, the
desktop computer had two distinct advantages: it had an
ethernet connection, and it had a large hard drive for
permanent storage. These two factors allowed the engineers
to use the same development and debugging tools that were
used to develop for the x86. Familiarity with the tools led to
a much easier and quicker porting process to the
StrongARM. These tools were not as convenient to use on
the iPAQ, and thus, attempting to port directly to the iPAQ
would have resulted in a longer development process.
 The major porting challenge was the lack of a floating
point unit on the StrongARM processor. While the
StrongARM is capable of floating point emulation, this is
extremely slow. In order to get efficient performance on the
StrongARM, some of the computationally intensive
processing modules were converted to use fixed point math
instead of floating point. While the original floating point

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

code was written for simplicity and ease of development,
the new fixed point modules required a much more careful
analysis of the signal flow and the magnitudes of those
signals. Issues that did not matter in floating point math,
such as overflow, underflow, and precision were now major
factors.
 For the most part, the conversion to fixed point math
affected just the low-level arithmetic operations, such as
addition and multiplication. However, a major algorithmic
change to the FM demodulator was required. The original
demodulator design makes heavy use of a particular
operation, calculating the argument of a complex number.
With a good floating point unit, the cost of this operation is
small. However, when performed via floating point
emulation on the StrongARM, this became the slowest part
of the system. Various attempts were made to write a better
fixed point approximation. However, none of these were
acceptable. The solution was to replace the original FM
demodulator with one that uses an FIR filter-based
differentiator. This algorithm, since it is based solely on
multiplications and additions, was much simpler to adapt for
fixed point arithmetic. This conversion to fixed point, while
necessary to port to the StrongARM, still preserves the key
principle of portability, since the new code written for the
StrongARM also runs on the x86; any processor with 32-bit
types can run this code.
 Using a performance-accurate desktop reference
platform had major benefits for the software development
process. At one point during the port, we noticed that the
CPU utilization on the iPAQ was higher than predicted by
the desktop platform. An investigation quickly revealed an
erroneous compiler setting that had left expensive
debugging code operating in the system. Without the
desktop platform for reference, this might not have been
detected until much later. The error would have affected
decisions about where to invest optimization effort in
subsequent phases of the port.
 Once the new fixed point code was tested and verified
on the StrongARM-based desktop, the code was moved to
the iPAQ. Here, the main task was integration since the
hardware, waveform software, and user interface were all
developed separately. On the iPAQ, most of the integration
issues centered around the interaction between the hardware
components, and very few waveform software changes were
necessary.
 During the debugging and integration phase on the
iPAQ, use of the Vanu, Inc. x86-based software radio
system was indispensable. This system contains capture and
analysis tools that Vanu, Inc. engineers have been using for
several years. As a software radio system, engineers are
able to rapidly modify the processing performed on it to
match the needs for each different debugging scenario.
When running the system as a spectrum analyzer, the
spectral characteristics of the transmitted signal from the

iPAQ can be observed. When running as a modulation
analyzer, the accuracy of the modulator and the symbol
clock can be measured. As an arbitrary waveform
generator, full FM or Project 25 signals using known audio
inputs can be transmitted to the iPAQ. Test tones and other
diagnostic signal patterns can also be sent. The system can
also act as a receiver for each waveform and decode the
signal transmitted from the iPAQ. In addition to emulating
a full FM or Project 25 radio and fully processing the signal
down to audio, this system is able to probe the receiver
chain at intermediate points and report those outputs. This
ability allows the engineers to see internal values such as the
samples entering the demodulator or the bits entering the
convolutional decoder. These values can be then processed
other signal processing chains for debugging or manipulated
in octave (a signal-processing program similar to Matlab).
 Similar signal traces could also be captured on the
iPAQ itself and then transferred to the x86 system for
analysis. This is an extremely powerful debugging
technique that allows the engineers to get access to the right
information deep within the radio, which significantly
reduces development and debugging time. More details of
the integration process are given in [2].

7. SOFTWARE RADIO PERFORMANCE

In addition to enabling the low-cost, rapid development of
waveforms and systems, the Vanu Software Radio
development process also results in highly efficient code.
Even though the StrongARM processor in the iPAQ is a
relatively weak processor in the SDR world, it is more than
powerful enough to run the Vanu, Inc. implementations of
most narrowband waveforms. The Project 25 software, at
its peak, consumes 24% of the 206 MHz StrongARM
processor. This includes all functions to turn voice into
symbols and vice versa, including modulation,
demodulation, synchronization, decoding, and the vocoder.
This implementation processes samples in 20 msec blocks.
This is the minimum possible payload size, and hence the
minimum possible latency, since it is the block size of the
Project 25 vocoder.
 The software on the handheld prototype also excels in
other areas. The number of lines of code required to
implement the Project 25 and FM waveforms are
approximately 27,000 and 3,900, respectively. These
figures include all the signal processing and control code as
well as comments and unit test code. The figures do not
include some general infrastructure code, such as the
Sprockit™ middleware or device drivers. StrongARM
binary size for the Project 25 waveform is about 480 KB,
which includes approximately 220 KB of user interface
code and libraries. Code with such a small footprint is also
quick to execute. Not counting the time to set up the RF

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

front end, it takes approximately two-thirds to one second to
launch either radio application.

8. CONCLUSION

Vanu, Inc., in partnership with General Dynamics Decision
Systems, has created a very successful handheld
demonstration system that illustrates the power of software
radio. In its current state, its capabilities are competitive
with current products available in the public safety market.
With additional modifications to the hardware and software,
it can be upgraded with capabilities that surpass most
fielded public safety radios. The planned hardware upgrades
are to extend the upper limit of the frequency range to 900
MHz and to expand the bandwidth to 200 KHz. These
upgrades, coupled with the port of our existing TDMA,
GSM, and CDPD code, will give the handheld new
capabilities in the commercial cellular and mobile data
areas. This new handheld would be able to function as a
legacy analog two way public safety radio, a digital Project
25 public safety radio, a TDMA and GSM cell phone, and a
mobile data terminal. Such a combination would be unique
in the marketplace.
 The key to rapid software development on a new
platform is modularity, code portability, and hardware
independence. While the holy grail of software radio, 100%
code reuse, is nearly impossible due to inherent platform
differences such as drivers and other hardware interface
code, the porting effort should be minimized to the extent
possible. This project was largely successful in that respect.
Floating point to fixed point conversion was an additional
required task, but much of that code was absorbed back into
the main x86 code base, so that future porting projects of
other waveforms to the StrongARM or other processors will
be able to take advantage of this work. The end result of the
Vanu Software Radio approach is that the port to the iPAQ
resulted in an efficient, functional prototype and was
completed in much less time, with far fewer people, and at
much less cost, than would be expected with other software
radio design approaches.

9. BACKGROUND ON VANU, INC.

Vanu, Inc. evolved out of the SpectrumWare software radio
research project at MIT in the mid 1990s. Since its inception
in 1998, the company has focused on waveform software
development for software radios. The extent to which Vanu
Software Radio systems implement signal processing in
software distinguishes them from other software radio
design techniques. Vanu systems perform as much signal
processing as possible in application-level software running
on top of standard processors and operating systems. The
advantage of moving signal processing into software is
increased flexibility: a Vanu, Inc. waveform (air interface)
implementation can run on a range of devices, from
handhelds to scalable infrastructure.
 Vanu, Inc. licenses software radio technologies and
waveforms and provides design-consulting services to
wireless device manufacturers, system integrators, and
service providers. The company’s core competencies
include strong software engineering, use of innovative
signal processing algorithms, development of portable code,
and the creation of commercial-off-the-shelf-based system
design.

10. REFERENCES

[1] J. Chapin, V. Bose, "The Vanu Software Radio System", 2002
Software Defined Radio Technical Conference, San Diego,
November 2002.

[2] J. Forbess, A.G. Chiu, “A Handheld Software Radio Based on
the iPAQ PDA: Hardware,” SDR Forum Technical
Conference 2003.

[3] TIA/EIA Standard, ANSI/TIA/EIA – 102.BAAA-1998,
Project 25 FDMA Common Air Interface, May, 1998.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

