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ABSTRACT  

 
Third generation (3G) and fourth generation (4G) wireless 
terminals will be required to provide exceptionally higher 
levels of service than their second generation (2G) 
counterparts. Ever-increasing demand for increased 
mobility introduces several physical requirements (e.g., 
longer battery life, reduced size, lighter weight, etc.), 
along with the requirements for massive processing power 
gains.  Additionally, there is an increasing consumer 
expectation for software-defined radio (SDR), as well as 
multifunctionality, whereby multiple upgradeable 
standards, protocols, and applications can occur on a 
single platform, thus enabling a worldphone. 
 

Wireless devices are fast approaching a point in the 
product development roadmap where, without a paradigm 
shift in the basic design architecture that moves away from 
fixed-function silicon technology, they will no longer be 
able to meet both the service and the mobility demands, 
simultaneously.  

 
The ideal solution would be to take advantage of the 

processing power of the ASIC while retaining the 
flexibility of the DSP. This is the very essence of the 
Adaptive Computing Machine (ACM), described in this 
paper. The performance of an ACM for 3G devices, 
including SDR, is validated in hardware through the 
implementation of a series of baseband algorithms.  
Benchmarks of the ACM performance are presented, 
showing significant improvements to be feasible relative 
to conventional IC technologies.  
 

1. INTRODUCTION 
 
QuickSilver Technology’s Adaptive Computing Machine, 
a new class of digital integrated circuit, is an outcome of 
its pioneering efforts in adaptive computing for 
commercial use. The ACM is the only software-
programmable integrated circuit (IC) that combines high 
performance, low power consumption, low cost, and 
architecture flexibility in a single chip.  
 

The inherent adaptability of the ACM’s architecture 
allows algorithmic elements to be directly converted into 

dynamic hardware resources during run time.  Simply put, 
software becomes hardware.  The ACM changes on the 
fly, adapting tens or hundreds of thousands of times per 
second to create the exact hardware needed for that 
moment in time. This results in the most efficient use of 
hardware in terms of cost, size (silicon real estate), 
performance, and power consumption. The flexibility of 
the ACM enables not only SDR, but also longer battery 
life and multifunctionality – ideal attributes for bringing 
the PC experience consumers expect to next-generation 
mobile, wireless, and convergent devices.  
 

Like many good ideas, the ACM concept is relatively 
simple, although its development requires a new approach 
to how we think about computing technology. 
 

2. ALGORITHMIC EVALUATION 
 
During the initial development of adaptive computing 
(AC) in the late 1990s, it became clear through 
mainstream research that FPGA-based reconfigurable 
computing (RC) has considerable limitations. 
Conventional RC technology approaches the problem at 
too macro a level. That is, RC tends to work at the level of 
entire applications or algorithms. In reality, it is critical to 
consider the problem at the micro level of algorithmic 
elements. 
 

Consider just how many core algorithmic elements 
there are and for what purposes they are used. For 
example, consider the number of elements used in word-
oriented algorithms, such as the compute-intensive Time 
Division Multiple Access (TDMA) algorithm employed in 
digital wireless transmission (see Figure 1 on the 
following page). Any variants, such as Sirius, XM Radio, 
EDGE, and so forth, form a subset of this algorithmic 
class. Therefore, a single adaptable architecture that can 
handle high-end TDMA will also be able to handle its less 
sophisticated cousins. 
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Once word-oriented algorithms have been evaluated, 

consider their bit-orientated counterparts, such as 
Wideband Code Division Multiple Access (W-CDMA) – 
used for wideband digital radio communications of 
Internet, multimedia, video, and other capacity-demanding 
applications – and sub-variants such as CDMA2000, IS-
95A, and so forth. Other algorithms to consider comprise 
various mixes of word-oriented and bit-oriented 
components, such as MPEG, and voice and music 
compression. The ACM architecture is able to cover this 
very large problem space and all the points in between. 
 

3.  A HETEROGENEOUS AND FRACTAL 
ARCHITECTURE 

 
Our evaluations revealed that algorithms are 
heterogeneous in nature, which means that, within a group 
of complex algorithms, their constituent elements are 
substantially different. In turn, this indicates that the 
homogeneous architectures associated with traditional 
FPGA-based RC approaches – which have the same 
lookup table replicated tens of thousands of times – are not 
appropriate for most algorithmic tasks. Even newly 
advanced FPGAs that have numbers of more complex 
elements like 18 x 18 multipliers don’t satisfy the 
requirements of adaptive computing. The solution also had 
to incorporate the need to achieve the ASIC “gold 
standard” of high performance and low power 
consumption within the adaptable architecture even if it 
required rapid, real-time hardware adaptations from 
unexpected algorithmic inputs. 
 

The solution is to create a fractal architecture that 
fully addresses the heterogeneous nature of the algorithms 

(see Figure 2). Start with five types of nodes: arithmetic, 
bit-manipulation, finite state machine, scalar, and 
configurable input/output used to connect to the outside 
world.  
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Figure 2. A Fractal Architecture 

 
Each node consists of computational gates and its 

own local memory cache (approximately 75% of a node is 
in the form of memory). Additionally, each node includes 
configuration memory, but unlike FPGAs with their serial 
configuration bit-stream, an ACM has from a 32 to 128-bit 
bus to carry the data used to adapt the device. 
 

It’s important to realize that each node performs tasks 
at the level of complete algorithmic elements. For 
example, a single arithmetic node can be used to 
implement different variable-width linear arithmetic 
functions such as a FIR filter, a Discrete Cosine Transform 
(DCT), a Fast Fourier Transform (FFT), and so forth. 
Such a node can also be used to implement variable width 
non-linear arithmetic functions such as ((1/sine A) x (1/x)) 
to the 13th power.  
 

Similarly, a bit-manipulation node can be used to 
implement different variable-width bit-manipulation 
functions, such as a Linear Feedback Shift Register 
(LRSR), Walsh code generator, GOLD code generator, 
TCP/IP packet discriminator, and other complex functions. 
 

A finite state machine node can be used to implement 
any class of Finite State Machine (FSM). In the case of a 
really large or complex FSM, the machine can be spread 
across multiple FSM nodes, or different portions of the 
state machine can be time-sliced across a single node. This 
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means that the node can be adapted to execute different 
portions of the state machine on-the-fly. 
 

A scalar node can be used to execute legacy code, 
while a configurable input/output node (not shown in the 
figure) can be used to implement I/O in the form of a 
UART or bus interfaces such as PCI, USB, Firewire, and 
other I/O-intensive actions. 

 
A key advantage of the ACM’s architecture is that 

any node can be adapted to perform a new function, clock 
cycle-by-clock cycle. This means that any portion of the 
ACM – from just a few nodes and interconnects up to the 
entire chip – can be rapidly adapted, or changed. This 
results in a radical change in the way algorithms are 
implemented today. Rather than passing data from 
function to function, the data can remain resident in a node 
while the function of the node changes on a clock cycle-
by-clock cycle basis. It also means that, unlike an ASIC 
implementation, the ACM can be adapted tens or 
hundreds of thousands of times a second, so that only 
those portions of an algorithm that are actually being 
executed need to be resident in the chip at any one time. 
This reuse of gates enables tremendous reductions in 
silicon area and power consumption as adaptations can 
happen in a micro-state rather than at the larger algorithm 
level (changing a FIR filter hardware element rather than 
completely rewiring the whole TDMA application). In the 
case of the ACM, this micro-adaptability versus a larger 
more modal (macro) adaptability allows for much more 
flexibility. 
 

Algorithms have a locality of reference nature, 
meaning they always move from one mathematical step to 
the next immediate mathematical step and data is only 
passed to that next step (this can involve several steps in 
parallel but they are still the next logical data movement). 
This knowledge means that the wiring needed between 
next logical steps should be very dense, but the converse is 
not true. Unlike an FPGA that has very dense wiring along 
its whole XY plane, the ACM can reduce its wiring 
structure by understanding that algorithms do not 
communicate, or spread out, to the far ends of the silicon 
area. The algorithm always moves data to the next logical 
step. Therefore the ACM's wiring is fractal in nature; the 
further away any two nodes are, the less wiring there is 
between them. The closer two nodes physically reside, the 
more wiring there is between them.  
 

Since the ACM’s architecture is fractal in nature, it is 
totally scalable. A 4-node cluster is formed from 
arithmetic, bit-manipulation, FSM, and scalar nodes, 

which are connected via a Matrix Interconnection 
Network (MIN). A 16-node cluster is formed from four 4-
node clusters linked by their own MIN, while a 64-node 
cluster is formed from four 16-node clusters linked by 
their own MIN, and so forth. An ACM can contain from 
one to thousands of node clusters, as required. 

 
Because the architecture of the ACM is designed to 

efficiently compute and manipulate information at the 
algorithmic element level, it has a fractal wiring plane and 
heterogeneous compute array that can adapt on a single 
clock cycle to hold data in one physical area, while 
moving the logic around the data.  It is very different from 
FPGA architectures that were originally built for TTL 
absorption, and ASIC prototype bug-fixes with an XY 
wiring plane that tie together all configurable logic blocks 
(CLB) with the same wiring structure as a homogeneous, 
fine-grained CLB array with very slow reconfiguration 
rates aimed only at complete algorithm model reuse.   
 
       These architectural differences lead to faster and 
easier ways to map applications into the chip’s circuitry. 
While FPGAs and ASICs use high-level Hardware 
Description Languages (HDLs) and hardware synthesis, 
the ACM’s tools are able to abstract the hardware 
specifics from the application, which can then become 
more like an embedded C design tool flow.   
 

4. SPATIAL AND TEMPORAL SEGMENTATION 
 
The spatial and temporal segmentation (SATS) process of 
the ACM enables SDR to occur.  Unlike conventional IC 
technologies, the ACM architecture adapts to the problem 
at hand, enabling timesharing, or spatial and temporal 
segmentation. SATS is the process of mapping algorithms 
for a given task to dynamic hardware resources, then 
rapidly performing various portions of an algorithm in 
different segments of time (temporal) and in different 
locations in the adaptive fabric (spatial) of the ACM.   
 

With SATS, the ACM’s gates are rapidly reused, 
bringing into existence for the exact amount of time 
needed -- clock cycle by clock cycle -- the hardware an 
algorithm requires, and then efficiently running any 
number of different algorithms on the hardware engine.  
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Figure 3. Temporal Sharing 
 
The temporal sharing aspect of the ACM fabric is 

illustrated in the Vocoder example, Figure 3.  As each new 
task of the vocoder is needed, its binary file is loaded onto 
the ACM fabric from the cache.  As the task is completed, 
it is removed from the fabric and the resources are freed 
for the next task.  The ACM is adapting itself 400 times 
per second.  In this example, the size of the ACM fabric is 
determined by the largest single element in the eight tasks.  
The other seven routines are able to run in the same space 
as the largest task. This reuse of the ACM fabric results in 
significantly more efficient use of the fabric and reduced 
costs. 

 
5. DESIGN ADVANTAGES 

 
ACM designs are represented in the SilverC™ language, 
which is C augmented with temporal and spatial 
extensions. Applications are developed in SilverC, and 
then compiled, to be expressed as downloadable 
applications in SilverWare™ binary modules. This means 
that, unlike an ASIC-based implementation in which 
algorithms are effectively frozen in silicon, the ACM can 
be quickly and easily adapted to accommodate the 
numerous evolving standards and protocols used in 
today’s designs. In addition to accelerating time-to-
market, this approach eases design reuse and reduces the 
risk of failure.  
 

ACM technology also eliminates the very difficult 
problems associated with hardware/software co-design 
because the entire system is initially represented as 
software. Having said this, it’s important to understand 
that SilverWare™ is not executed by the ACM in the same 

way that machine code is processed by a DSP, i.e. 
executing a long stream of instructions. Instead, 
SilverWare™ is used to dynamically adapt the ACM on-
the-fly to create the exact hardware needed to perform 
whichever algorithmic tasks are required at any particular 
time. Complex algorithmic elements can be thought of as 
the smallest operators, and many of these complex 
algorithmic elements are temporally or spatially combined 
to form an application. In essence, software becomes 
hardware.  

 
Because software is easier and faster to develop than 

the hardware of ASICs – hours or days vs. several months 
or years, based on the number of functions – a developer 
can rapidly move from design concept to silicon 
implementation for a product. Working in software also 
enables developers to make changes at any time during the 
design cycle, as well as after product shipment. For 
example, if updates or bug fixes are needed, turn around 
can quickly occur in software rather than going through 
the long lead-time and costly re-spin cycle of an ASIC.   

 
6. THE BENCHMARKS 

 
The first ACM test chip was compared to best-in-class 
ASIC implementations for a number of compute-intensive 
wireless functions. To date, these tasks have always been 
implemented in ASICs because DSP and FPGA 
implementations are much too slow, too power hungry, 
and use too much silicon area. 

 
For example, as demonstrated in February at the 

Consumer Electronics Show (CES) in Las Vegas, the best-
in-class ASIC was compared to an ACM for a 
CDMA2000 searcher with 2x sampling, using 512-chip 
complex correlations, with captured data processed at an 
8x chip rate (equivalent to 16 parallel correlators running 
in real time). The ASIC took 3.4 seconds, while the ACM 
took only 1.0 seconds (3.4 x faster). In the case of a 
CDMA2000 pilot search, with the same parameters as 
above, the ASIC took 184 ms, while the ACM took only 
55ms (3.3 x faster). For a W-CDMA searcher with 1x 
sampling using 256-chip correlations with streaming data, 
the ASIC took 533 µs while the ACM took only 232 µs 
(2.3 x faster). Furthermore, in addition to out-performing 
the three ASIC implementations, the single ACM 
counterpart performed all three tasks, used significantly 
less silicon real estate, and consumed only a fraction of the 
power.  
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7. THE MARKETPLACE 
 
The software-to-hardware capability of the ACM 
technology enables OEMs of mobile, wireless, and 
convergent devices to achieve faster time to market, lower 
cost of development, higher margins, as well as the ability 
to extend the life of products, increase revenues, 
immediately react to market trends, create product 
differentiation, and build brand loyalty by offering a wide 
range of add-on features and functionality after the initial 
product sale.  Service providers can go beyond their 
limited price-per-minute business model, with faster time 
to market, and new revenue streams for added features and 
services.   

 
 
 
 
 

7.1 End-user advantages 
 
By accessing any number of protocols, consumers will 
experience seamless roaming throughout the world, 
staying “connected” via the same single mobile device. 
Additionally, the ACM enables a single mobile/wireless 
product to perform a variety of functions, rapidly changing 
from a digital camera, to streaming video, to data retrieval, 
email, Internet and Intranet access, a global positioning 
system, or an MP3 player.  The applications are limited 
only by the imagination.  Today’s handsets will essentially 
become mobile communicators with media rich 
(data/voice/image/video) applications and the needed 
features to call, page, email, and stay connected – at any 
time, and anywhere in the world. 
 
For more information about QuickSilver Technology and 
adaptive computing, visit www.quicksilvertech.com. 
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