
RAPID WAVEFORM MODELING TECHNIQUES FOR SOFTWARE DEFINED
RADIOS

Steven W. Cox

Steve.Cox@gd-decisionsystems.com
General Dynamics Decision Systems, 8220 E. Roosevelt, Scottsdale, AZ

ABSTRACT

A modeling process for rapidly developing waveforms on
Software Defined Radios (SDRs) is presented. The
Benefits of using this process are highlighted. The
techniques presented in this paper are the result of
research and product development for the General
Dynamics Wireless Information Transfer System (WITS)
which includes these military waveforms: AM, FM,
Havequick, SINCGARS, SATCOM, and Link11. During
WITS development, the Matlab/Simulink tool has been
sucessfully applied to Waveform design to reduce product
development time and guarantee specified performance.
Both floating and fixed point modeling techniques will be
discussed for DSP processors using CORBA as well as
FPGAs.
 By using this process of modeling, both Systems
Engineers and Hardware/Software Implementors have
visibility of the system design which leads to faster
implementation with fewer design flaws.

1. INTRODUCTION

Software Defined Radios (SDRs) are mainly composed of
two distinct entities: The hardware platform and the
software application. The applications are known as
“waveforms” and can be implemented in either real-time
software, FPGA logic, or a combination of both.
Regardless of implementation, the radio system is defined
by the waveform running on the platform.

2. ACCURATE SYSTEM MODEL: THE
FOUNDATION OF A WAVEFORM DESIGN

Because waveforms are real-time applications, it is critical
that the signal processing paths be modeled accurately.
Waveform control (mode switching, parameter refresh)
and data processing (transec algorithms) can be included
in the system model. Waveform control components are
optional for waveform modeling because the model rarely
benefits from a highly accurate model in these areas. The
cost (simulation time, development time) of building these
non-signal processing models does not justify their
benefits. A typical SDR waveform model will consist of

three components: 1.) The Transmiter, 2.) The RF
Channel, and 3.) The Receiver as shown in Figure 1. The
Transmitter and Receiver components shown include the
RF interface and modem functions but may optionally
include cyrptography, source coding, audio/video
processing, and applications such as a browser, sensor, or
display. To reduce simulation time, the model is designed
to run at the baseband level or low-pass equivalent [1].
Models for direct IF up-conversion/downconverson can
be used to verify the signal processing effects on
baseband signals but the expense of longer simulation
times is incured.
 Each component of the waveform model contains
subsystems that are termed “Objects” which model the
exact algorithms performed by software Corba Objects,
FPGA Cores, or hardware. This approach provides the
benefit of being able to compare test vectors generated
with the waveform model against software, FPGA, and
Hardware implementations. An example of some basic
model objects is shown in Table 1.
 Most of the objects modeled are created from
standard Matlab/Simulink Library blocks. In some cases
such as an FPGA implementation or complex software
algorithm, it is necessary to use a Matlab S-Function. “An
S-Function is a computer language description of a
dynamic system” [2]. The S-Function is created using C-
code inside a Matlab wrapper which is compiled into a
*.dll file. This *.dll is then called from a standard S-
Function block in Simulink. Custom inputs, outputs, and
parameter menus can be added to the S-Function. Some
generic FPGA S-Functions are available as Off-the-Shelf
Blocksets such as the Xilinx System Generator and Altera
DSP Builder. These products are add-ins to the
Matlab/Simulink Library and are discused in more detail
in the Fixed Point Modeling section of this paper.

3. MODEL PARTITIONING

In addition to decomposing model subsystems into
objects, the partitioning of objects to run on the hardware
platform should also be captured in the waveform model.
Partitions can be classified into several levels. At the top
level is the hardware interface, for example, RF hardware
up/down converters, modem board, security board, audio

Copyright © 2002 General Dynamics. All rights reserved. Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

board, serial I/O board. Below the hardware interface,
partitioning can occur among various processors that
occupy each board including FPGA processors. The
advantage of this partitioning is that the detailed
subsystem requirements can be allocated so that
implementation is more focused on a per processor basis.

The total requirements including processor utilization and
latency for a given processor can therefore be assesed by
using good partitioning. Furthermore, all I/O for each
processor can be captured to use for hardware/software
integration and validation.

Figure 1. Waveform Model Components.

 Transmitter RF Channel Receiver

Modem Tx DAC Tx RF Tx RF Rx DAC Rx Modem Rx
Type
converter

Amplitude
Ramping

Tx Frequency
Offset

Rx Frequency
Offset

I/Q
Decimation

FIR Pre-Detection
Filters

Repeat 4X I/Q
Interpolation

Interferer/
Jammer

AWGN
Combiner

Signal
Conditioning

Demodulator/
Carrier Tracking

FIR Pulse
Shaping
Filter

Digital I/Q
Modulation

 I/Q Mismatch FIR Filtering IIR Filtering

Modulator DC Offset Bit Syncronizer/
Symbol Tracking

Interleaver Rx Analog
Filters

 Correlator

 De-Interleaver

O
B
J
E
C
T
S

FEC
Encoder

 FEC Decoder

|
|
|
|
|
|
|
|
|
|
|
|
|
|

_ _
|
|
|
|
|
|
|
|
|
|
|
|
|
|_ _TRANSMITTER

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| _RECEIVER

_ _
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0

fo_Tx

0

fo_Rx

-106

Rx Power (dBm)

Rx_Pwr

fo_Tx

fo_Rx

I_In

Q_In

I_Out

Q_Out

SNR

RF CHANNELData_In

I_Out

Q_Out

Modem Tx

I_In

Q_In

RCV_Out

Modem Rx

Eb/No (dB)

I_In

Q_In

I_Out

Q_Out

DAC Tx

I_In

Q_In

I_Out

Q_Out

DAC Rx

0.0000e+000

Bit Error Details

Tx

Rx
Out

BER
Calc

Rd wksp

 Test Data

Table 1. Example Objects Within Model Components.

Copyright © 2002 General Dynamics. All rights reserved. Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

4. MODEL STRUCTURE

A proven method has been used to model waveforms
using Matlab/Simulink. The method consists of three main
parts: 1.)Matlab *.m file script, 2.)Simulink *.mdl file,
and 3.)Filter and data files *.mat files. Running the *.m
file initializes the model system parameters, loads all filter
coeficients, loads all test data, and plots all filter
responses. Next, the Simulink model is run which uses the
parameters and coefficients stored in the Matlab
Workspace. Simulation data can be output to real time
FFT analyzers, scopes, stored as *.wav files, or stored in
the workspace for further analysis and refined plotting.

5. FIXED POINT MODELS

Many SDR applications require high speed signal
processing and control timing. The FPGA is frequently
used for demanding fixed-point processing. To model the
fixed-point subsystems several off-the-self tools are
available for Matlab/Simulink.
 The most generic, is the Matlab Fixed-Point Blockset
which is a collection of bit-true primitive blocks and an
overflow monitor. Various rounding and truncation
options are found in each block and the ability to overide
using double precision is available locally as well as
globally. The advantage of using this blockset is that the
impact of bit-width and scaling of each fixed-point
operation can be determined through simulation. Also, the
ability to override data types with double precision is
provided so that a comparision between fixed and floating
point implementations can be analyzed. One dis-
advantage of this tool is the absence of cycle-true
simulation which accounts for the real-time clock
interaction between blocks. Another dis-advantage is that
there is not a one-to-one mapping between the model
blocks and actual FPGA implementations. This increases
development risk since an experienced FPGA designer is
required to interpret the Matlab model and design
equivalent algorithms in FPGA native code.
 More specific blocksets for FPGA modeling are
available through the FPGA manufacturers. These include
the DSP Builder from Altera and the System Generator
from Xilinx. The concept behind these tools is that each
block in the blockset is a C-code model of a highly
optimized VHDL core. VHDL code synthesis is made
possible by a compiler block which translates each
block’s parameter settings and the connections between
blocks into a VHDL directory. The VHDL code produced
can be highly optimized if good FPGA design practices
are observed during model contruction. In addition to
being bit-true and cycle-true these tools offer the added
advantage of code systhesis. Many improvements in the
FPGA cores are made possible by advances in FPGA

technology [3], and use of blockset compilers allows the
design to evolve and track available technology.
When designing for fixed-point implementations, the
dynamic range of each processing function is critical to
overall system performance. In fixed-point modeling, the
dynamic range is controlled by the number of bits and the
use of scaling (binary point) within each primitive block.
In many cases, the fixed-point model is designed to
closely approximate floating point processing within a
given dynamic range. The more constained the dynamic
range and signal properties are, the more efficient the
design since fewer bits can be used to process a given
signal over a restricted range. The effects of improper
dynamic range management can be seen in the form of dc
offset, quantization noise, and overflow. The use of
rounding vs. truncation can mitigate the dc offset problem
at the expense of more processor resources. Using more
bits per function can reduce the quantization niose floor
but also increases processing requirements.
Test signals such as sinusoids, unit impulse, dc offset, and
modulated I/Q data have proven useful in analyzing
dynamic range requirements and performance of the
model. A common flaw in fixed-point design is the
disregard to real-world signal responses. The presence of
noise, interferers, and transients can have various
unwanted effect in fixed-point functions. The advantage
of working in the Matlab/Simulink environment is that
many real-world signals can be modeled using the
standard library. Also, laboratory test signals can easily be
imported to the Matlab workspace from test equipment
such as a digital oscilloscope or network analyzer and run
through the fixed-point models.

6. REAL-TIME MODEL ANALYSIS

In addition to signal processing performance, other real-
time aspects of the system model should be evaluated to
ensure feasible implementation and temporal
performance. These include: Latency, Throughput,
Processor Utilization, and Group Delay. The analysis of
these performance measures is more important for
software processors vs. FPGA processors. One reason is
that FPGA processors perform sample by sample
processing which is strictly tied to a sample clock.
Another reason is that FPGA processors are much faster
at performing functions. Conversely, software processors
need to perform packet (block) based processing in order
to avoid high overhead for each object in the processing
chain. Because the packets are not usually synchronized to
a common reference clock, flow control becomes an issue
as well as synchronization with time critical events such
as correlation and frequency hopping control.

Copyright © 2002 General Dynamics. All rights reserved. Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

 Processor Utilization for an FPGA is total number of
logic cells that the design will occupy. This can be easily
computed by the FPGA software implementation tools
before running on an actual FPGA.
 Software processor utilization is dependent on data
packet size, processor speed, and function complexity. To
get accurate estimates of utilization, characterization of
the exact function running on the processor is required.
The feedback loop between model and characterization
causes the waveform design flow to be less iterative. For
many functions, software processor utilization for a single
function can be computed as

Where fs is the sample rate in samples/second and the
function processing time per sample is a normalized rate
of performance. The cumulative percent utilization can be
computed as

Where M is the total number of processing functions in
the signal processing chain.
 Latency mainly depends on packet size, buffer size,
and sample rate. For objects that perform buffering only,
the latency can be computed as

For objects that perform a signal processing function
latency can be computed as

It is convenient to build models that use a frame size
(Matlab term for packet) equal to the actual packet size.
The benefit of this accuacy is that the software design can
direcly follow the model. Simulink shows the frame size
automatically above each interconnect line between
subsystems. By having characterization data available for
existing model objects, the waveform designer can predict
latency and utilization at the system level and thus
optimize the design latency through the model.

7. RF CHANNEL MODELS

It has been proven useful to use a common RF channel
model among many waveform models for a given
hardware platform. In many software radio applications,
the system noise figure is a dominant specification for the
RF channel model. In addition, the RF power level (PR) in
dBm is often specified for performance measurements
such as receive sensitivity, interference levels, and
detection thresholds. A typical RF channel model will
input modulated complex I and Q signal pairs as

)2sin()2cos()(smsms nTfjAnTfAnTs ππ +=
(fs)

sample
 timeprocessingfunction

=SWU

where A is constrained to 1.0, n is the sample index, and
Ts=1/fs is the baseband sampling interval. The linear
noise power can be computed as

BkTP RN =

∑
=

=
M

N
SWTotalSW N

UU
1

_ where k =1.38e-23 (Boltzmann's Constant) and TR is the
receiver system temperature. This temperature can be
written as

293 + 1) - (NF/10)(10^ * 293=RT

where NF is the receiver noise figure in dB. B is the noise
bandwidth, which may be equivalent to fs if the signal is
complex. By taking the square root of the linear noise
power, we can obtain a noise gain that can be used to
scale a zero mean random noise generator with variance =
1.0.

fs
lengthbuffer

min =L

() minsample
 timeprocessfunction sizepacket LL +

= NN PG =

This noise is then added to the signal s(nT) as shown in
Figure 2.
 To adjust the signal amplitude based on a given RF
input power in dBm, a signal gain is computed as

)10(2 10
)30(−

=
RP

SG

Copyright © 2002 General Dynamics. All rights reserved. Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

Figure 2. RF Channel Model Components

2

Q _ O u t

1

I_ O u t

S u m 2

S u m 1

N F _In G _ S

S ig n a l G a i n

-1 0 6

P ro p a g a ti o n
L o ss (d B m)

P ro d u ct4

P ro d u ct3

P ro d u ct2

P ro d u ct1

N F _ In G _N

No ise G a i n

8

No i se
F i g u re (d B)

I_ In

Q _ In

f o_ In

I_O u t

Q _O ut

F re q u e n cy
O ffse t

1 0 0

Fo

M A T L A B
Fu n c ti o n

A W G N u =0 ,va r=1
G e n e ra to r2

M A T L A B
Fu n c ti o n

A W G N u =0 ,va r=1
G e n e ra to r1

2

Q _ In

1

I_ In

Note that the AWGN noise generators must be
statistically independent. The advantage of this modeling
technique is that a common RF Channel subsystem can be
used to combine AWGN for any transmitter whose output
is normalized to +1/-1 amplitude. Since it is convenient to
impose normalization of the transmitter I/Q outputs for
SDR systems, this technique achieves the goal of having
an accurate system model.

Copyright © 2002 General Dynamics. All rights reserved.

This RF Channel model accounts for receiver hardware
noise floor with respect to input power. Additional model
components such as RF AGC, Analog filters, and
amplifier non-linearity can be added to enhance the
system model accuracy.

7. REDUCED PRODUCT CYCLE TIME

The reduction of waveform development cycle time is of
key importance to many SDR programs. To demonstrate
the main benefits of using this modeling process, the
application of the model to the software/firmware
development process is shown Figure 3. Here the
waveform model is created during the system design
phase and is used to drive both the FPGA and software
development cycles. Because of the philosophy of an
accurate system model, both the FPGA design and the
software design have a one-to-one mapping with the

system design. This allows the verification of units within
the FPGA and software to be done using test vectors
generated directly from the waveform model.
 For FPGA development, the use of standard software
tools alone can lead to a lengthy and costly development
cycle. By the use of waveform modeling, the FPGA
design can be simulated very quickly using system level
tools and then a minimal set of test vectors used to
compare the FPGA implementation with the waveform
model.
 In the software development cycle, long development
times can result from the gap between system design and
software implementation. To help bridge this gap, the
waveform model can be used directly by the software
engineer to produce a production C-code equivalent. It
has been proven useful for the software engineer to work
directly from the waveform model when creating the
software code. By running simulations of the model, the
software engineer can gain an understanding of how the
waveform behaves and is able to generate software test
vectors directly. This results in savings of manpower since
the waveform system engineer is relieved from generating
an unknown number of test vectors.
 In addition to software and FPGA development cycle
improvements, the waveform system design cycle is
greatly improved using this modeling approach. System

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

design documentation and design reviews greatly benefit
from the graphical output of the model. Model
subsystems, filter characterization plots, time/frequency
signal plots, and performance (SINAD/BER) are all
model generated.
 This approach is unique in that the creation and use
of the Matlab/Simulink models is tailored around the
design of waveforms. In essence, the process is waveform

centric so that visibility of the waveform is kept at a
system level where key decisions can be made that affect:
1.) Development cycle time, 2.) Performance, and 3.)
Cost. Quantitatively, software development cycle time has
been reduced by 30%.

Model Analysis, Partiioning,
Requirements

Waveform Model

VHDL

Waveform FPGA
Design

Waveform FPGA Design
Documentation

Verify VHDL against Matlab Models.

Waveform
Software Design

Waveform
Integration and Test

Verify C Code against Matlab Models.

Generate
FPGA Design

Generate
Software
Design

Waveform Software Design
Documentation

C Code

Fixed Point Models,
Filter Coeficients

Floating Point Models,
Filter Coeficients

Fixed Point
Test Vectors

Floating Point
Test Vectors

Waveform System Test

Waveform
System Design

Test Vectors

Figure 3. Rapid Waveform Modeling Applied to Software/FPGA Development Cycle.

8. CONCLUSION

In this paper, a process and techniques were given for
rapid waveform modeling. The importance of an accurate
system model was discussed and how that model fits into
SDR development to reduce production cycles. The
benefits of using this process were presented through the
use of flow diagrams. Because of the graphical nature of
the modeling tools used and the accuracy of the model,
development teams are able to work efficiently to produce
higher quality products for software defined radios.

9. REFERENCES

[1] M.C. Jeruchim, P. Balaban, and K.S. Shanmugan,

Simulation of Communication Systems, Kluwer
Academic/Plenum Publishers, New York, 2000.

[2] The Mathworks, Inc., Writing S-Functions, 1998.

[3] Dick, C.; Harris, F., FPGA signal processing using sigma-

delta modulation, IEEE Signal Processing Magazine,
Volume: 17 Issue: 1, Jan. 2000
Page(s): 20 -35

Copyright © 2002 General Dynamics. All rights reserved. Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

