
OTA MOBILE DEVICE SOFTWARE MANAGEMENT

Sudharshana M, sudharshana@motorola.com, Parixit Aghera, parixit@motorola.com,
Suresh Chintada, Suresh.Chintada@motorola.com,

Motorola India Electronics Ltd., 33/A, Ulsoor Road, Bangalore, India – 560 042
 Alan Bok, Alan.Bok@motorola.com, John Grosspietsch, John.Grosspietsch@motorola.com,

Motorola Labs, 1301, East Algonquin Road, Schaumburg, IL 60196

ABSTRACT

There is a tremendous proliferation of Mobile devices,
fueled by intense competition among various players to
provide consumers with better and better ways to
communicate and as the technology evolved from Analog,
to Digital and now 3G. The software content on these
mobile devices continues to increase as the underlying
processor and DSP technology matures. The increased
software content on these devices comes fraught with the
risk of containing buggy code leading to disruption of
service to the consumer. Also as increased competition puts
pressure on the service providers to differentiate their
offerings, the number and variety of features that get added
to these devices also is increasing steeply. Both these
situations require managing the software content on these
mobile devices in an innovative way if one wants to
contain costs and sustain revenues.

In this paper, we propose a new architecture for over the air
management of software on a mobile device. A software
architecture supporting software patches, including secure
downloading of software from a data network and robust
installation of the same on a mobile device based on Sun
J2ME platform and SyncML framework is discussed in this
paper. Using this architecture, a network operator can
notify a mobile device user about the software upgrade and
send the upgrade to the mobile device over the air. The
paper uses our current prototype implementation and
discusses the implementation of the proposed architecture.
The current prototype implementation demonstrates remote
management of DSP software on mobile phones in GSM or
GPRS networks using an efficient installation algorithm
with error recovery mechanism. It uses digital signature for
checking authenticity and integrity of the downloaded DSP
software patch.

1. INTRODUCTION

Research on software-defined radio (SDR) has become the
latest buzzword with in the Mobile device manufacturers
and operators community. Software defined radio technical
implementation issues vary according to the form factor

and the applications. Recent developments in SDR
technology have been discussed in [1]. A number of
technologies have allowed the development of
commercially viable platforms providing an efficient bridge
to the third generation wireless systems as discussed in [2]
and [3]. Though the core issue lies in hardware support for
SDR phones [4], an important issue lies in customizing the
software for different needs of the network and the
consumers. Some issues pertaining to maintaining the
protocol software stack software have been addressed in
[5]. In this paper we identify SDR is not restricted to just
maintaining network related software, but also maintaining
mobile device specific software and attempt to show this
device software could be managed by using over the air
mechanisms.

 Over the air Mobile Device Management is receiving
enormous amount of interest in the mobile device
community. This is due to the fact that, number of mobile
device users has been exploding and the size and
complexity of software content on each of these devices is
also increasing, leading to difficulty in managing all these
devices. A number of issues related to managing the
software on these devices using over the air service
provisioning, re-programming, quality of service and other
similar problems are being addressed and discussed
extensively. Mobile device software management includes
operations such as application provisioning, application
management and software upgrades. Software upgrades
could be used for adding a new functionality, enhancing an
existing feature, or bug fix to the existing phone software.
As of today mobile device software management is done
offline at a customer care center or at the factory. The
disadvantage with this approach is that user has to
personally visit the customer care center and surrender the
mobile device for maintenance. This results in
unavailability of the mobile device to the user for that
particular period as well as increased costs of maintenance
to the mobile device manufacturer as well as to the
operator. As the mobile device user population increases,
this task of offline-management becomes tedious and
expensive.

 In this paper we introduce the problem of device
management and cover related issues in Section 2. A

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

mailto:sudharshana@motorola.com
mailto:parixit@motorola.com
mailto:Suresh.Chintada@motorola.com
mailto:Alan.Bok@motorola.com
mailto:John.Grosspietsch@motorola.com

3. PROPOSED ARCHITECTURE detailed discussion on our solution and use cases is
discussed in Sections 3 and 4. Finally, in Section 5 we
conclude by summarizing the advantages of our solution
and future work.

In this section we propose a software architecture that
addresses the issues discussed in Section 2.

3.1. Architecture 2. ISSUES IN OTA DEVICE SOFTWARE
UPGRADES

OTA Software Upgrade can be divided into 3 major
functionalities. Figure 1

Figure 1: Elements involved in OTA mobile software
upgrade

 is a simplified diagram showing elements
involved in OTA (Over The Air) software management and
describing the problem of software management.

Notification and Download Protocol for patch: This
functionality is proposed to be implemented using common
industry standards to make software upgrade solution
interoperable. We have used SyncML [6] for this
functionality. SyncML is a new industry initiative to
develop and promote a single, common data
synchronization/ device management protocol that can be
used industry-wide. To maximize the reuse, we have
implemented SyncML specifications in J2SE [8] at server
side and J2ME [9] at client side. More specifically we have
used MIDP (Mobile Information Device Profile) [10] at
client side, since MIDP is most widely available
implementation for J2ME based devices.

 Following are the issues that any OTA device software
management architecture must address:

Storage and Installation of patch on ME: Though
storage and installation of a patch is platform dependant
functionality, its necessary to have a defined interface for
this functionality. Implementation of this functionality can
vary but the interface should remain the same. We have
used J2ME at client side for defining Java APIs for this
functionality.

2.1. Interoperability

An operator’s network provides services to MEs (Mobile
Equipment) from multiple vendors and a vendor’s ME
accesses services from different operator’s network. So
interoperability between an operator network and the
device manufacturer is the basic requirement for device
software upgrade.

Generation and Storage of patch on download server:
A generic structure for the patch is not defined as the
generation of the patch is ME specific. Patch and its license
are generated by the ME manufacturer. These are in turn
distributed to operators for hosting on a software
management server.

2.2. Variations in ME architectures

Different ME vendors manufacture MEs with various
software/hardware architectures. Hence the process of
storing and installing the software upgrade or a software
patch is specific to ME platform. These variations in the
ME hardware and software architectures need to be
understood for captured in the architecture for a solution
generic enough to suit different devices.

 Architecture proposed in as a solution for
OTA Mobile Device Software Management adheres to
SyncML Device Management specification. Server side
components are collectively known as Management Server
and Client components are collectively known as
Management. Both client and server side components fall
into 3 categories.

Figure 2

2.3. Extensibility

• User Interface (client / server application) Extensibility implies, that it should be easy to add software
upgrade support in the system for a new ME or for a
different hardware platform software of an existing ME.

• Device Management Logic (SyncML Profile)
• Data Repository Management (TM [Terminal

Management] Profile, Patch Profile, Server
Profile, Flash Memory/Management Information
Base)

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

3.2. Server Application

Server Application provides web-based Graphical User
interface (GUI) to operator for setting a management
operation for a specific device. For example operator can
select particular software version of an application to be

distributed to particular type of devices. Server application
initiates the software upgrade or another management
operation by sending SMS notification message to terminal.
In J2SE environment a server application is Java servlet but
it can be implemented in other HTTP server program
environment like CGI, ASP etc…

Figure 2: OTA Mobile Device Software Management Architecture

3.6. HTTP 3.3. Server Profile

HTTP transport protocol is used as transport protocol in
proposed solution. But it is possible to use a different
transport protocol for completing the communication
between client and server.

Server profile provides access to appropriate data stored in
a MIB during a SyncML management session with
terminal.

3.4. SyncML Profile
3.7. TM Profile

SyncML Profile implements SyncML Management
Protocol, version 0.9 as specified in [11]. SyncML profile
implementation of client and server talks according to
SyncML DM (Device Management) protocol. This
component generates SyncML messages to be sent to client
and parses the received SyncML messages.

TM profile executes the command specified by the
management server. Some of the command execution may
require invoking native application or methods. This is
accomplished by using JNI (Java Native Interface). It uses
Patch Profile Services for software patch storage and
software patch installation services.

3.5. Client Application
3.8. Patch Profile

Client Application is a MIDlet application which will
present User Interface to mobile device user and accept
user input whenever it is required. Client application is
required to initialize SyncML profile for exchanging
SyncML packages with Management Server. It also
initializes TM profile for executing the device management
command specified by the Management Server.

The Patch Profile provides following services required for
a software upgrade.

Version and Resource Information: Patch Profile
maintains version information of all upgradeable software
applications on the ME. It also keeps track of available
resources for download and installation of a new patch.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

3.12. Security Library This version and resource information is sent to server
during SyncML message exchange so that Server will be
able to decide whether ME requires upgrade for an
application.

Before installing a patch, it is important to verify the
authenticity and integrity of the patch data. Patch Profile
uses security library available on the platform for this
purpose. Patch Profiles provides a Java wrapper around this
security library. Patch Profile verifies the integrity and
authenticity of downloaded patch by passing patch and
patch license to the security library. Support for
confidentiality in Security Library is optional to ME
manufacturer.

Secure Patch Storage: Patch Profile stores downloaded
software patches in the flash memory of ME. Patch Profile
manages storage of multiple patches. It verifies the
authenticity and integrity of the patch by using patch
license downloaded along with patch. If confidentiality of
patch is important for an ME manufacturer, patch can be
encrypted and then the encryption information can be
provided in license. 3.13. Patch Download Process

Patch Download Process complies with SyncML Device
Management protocol as described in [12]. There are 2
phases as in a management session between Management
Server and Management Client.

Fail-safe Installation: Patch Profile ensures that patch
installation proceeds automatically and is managed in a
fail-safe manner that is supposed to prevent partial or
corrupt installation from crashing the system or otherwise
rendering it inoperable. Since software upgrade could be
for system critical component any corruption during
software upgrade may render the device unusable. Once
installation is started it ensures that installation is
completed.

Setup Phase: Setup phase requires exchange of package0
to patckage2 between Management Server and
Management Client. Pakcage0 is required only in server
initiated management session. Client initiated management
session starts with package1.
 Patch Profile is designed in generic way so that it can

be extended easily for different software patch types. Management Phase: Management phase consists of a
number of protocol iteration. Protocol iteration means a
package from client to server and a package from server to
client.

3.9. MIB

The Management Server maintains MIB or Management
Information Base. MIB contains information for each
terminal that Management Server manages. It also stores
different software patches that ME needs to download.

3.10. Flash Memory

Flash memory is re-programmable persistent memory in a
ME. All the ME configuration parameters and upgradeable
application software are stored in this memory. TM profile
and Patch Profile re-programs the flash memory to set new
configuration parameters and upgrade the device software.

3.11. Application Patch Generator

Patch and its corresponding license for software of an ME
are released by the application Patch Generator component.
Both patch and license are stored in MIB along with the
their description, software version, ME model ID for which
the patch is, resource requirement for installation of the
patch on ME. Application Patch Generator assigns a unique
ID to each new patch generated.

Figure 3: SyncML package exchange for DSP software
upgrade.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

 shows the example SyncML package
exchange between Management Server and Management
Client for DSP software upgrade.

Figure 3

Package 0: “Package 0” is optional. Whenever a new DSP
patch is available for a terminal, Management Server
invokes on the terminal by sending a SMS auto-launch
message via SMS-C. SMS auto-launch is parsed by SMS
engine, which in turn launches the Client Application.

Package 1: “Package 1” contains client authentication
credentials and device information including DSP software
version.

Figure 4: Patch Profile as stack

 Figure 4 shows the patch profile as stack in J2ME
environment. Following is the description of each
component in the stack.

Package 2: Terminal Management Server sends following
information in a SyncML document.

 Installation of native software such as DSP software is
a very platform dependant task. To achieve above design
goals and to separate out platform dependant part of the
patch profile from platform independent part Patch Profile
implementation is divided into following two parts.

• Patch Information (Description of the patch)
• Patch
• Patch License

Package 3: Management Client stores the DSP Patch and
performs DSP patch installation DSP patch installation.
Once the installation is complete it sends back the results
back to Management server for operation in package3.

• Patch Profile Java APIs
• Patch Profile Native implementation.

Patch Profile Java API: This is platform independent part
of patch profile, which exposes set of APIs to TM Profile
and other applications. This part performs platform
independent task such as storage management of patch and
its license. For platform specific task, which requires native
method execution Patch Profile Native implementation is
called via Java Native Interface. Patch Profile Java APIs
are designed in a generic way so that they handle different
types of patches without any changes in the exposed Patch
Profile APIs. This enables easy extensibility for different
kind of software patch. Patch Profile Java APIs are LCC
(Licensee Closed Class). For example, current patch profile
supports only DSP patches to be installed in the phone. To
add installation support for native applications there will be
addition of installation functionality for that new patch type
in the patch profile and there will be very few changes in
the other components of the system. This part of patch
profile implementation can be reused without any changes
for other platforms also.

Package 4: Signals client to terminate the management
session.
 Large sized patch can span across multiple SyncML
packages. SyncML Sync Protocol version 1.1 specifies
how to handle large objects.

4. PROTOTYPE IMPLEMENTATION DETAILS

Prototype implementation of the proposed architecture was
done on Motorola’s 280i phone with J2ME platform.
Prototype currently upgrades DSP software of the phone.
Typically DSP software in 280i is responsible for all signal
processing, vocoding and other multimedia related
computationally intensive tasks.

4.1. Patch Profile Design

Patch Profile is designed while keeping following goals in
consideration.

Patch Profile Native Implementation: Patch Profile
Native Implementation includes the native code required to
install a particular type of patch and gather version and
resource information for a particular type of patch
installation. Current Native Implementation includes native
method implementation for getting current DSP software
version, available space for installation process and
installation of the DSP patch. Installation process of DSP
patch uses patent pending mechanism for upgrading the
DSP patch. This installation process is fails-safe and allows

• Fail-Safe Installation
• Extensibility
• Reusability

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

5. CONCLUSIONS recovery of installation in error like power failure or system
crash. Implementation of this part of patch profile changes
depends on the platform architecture. Software download is a necessary mechanism needed to

support re-configurable feature of any SDR device. In this
paper, we discussed the core problems and issues related to
OTA device software management that future SDR mobile
radios must address. We proposed a possible architecture
solution for managing the mobile radio software over the
air for deployment of software modules (upgrades of DSP
software) below the application level in mobile terminals
(280i).

MIDP/CLDC APIs: These are standard APIs available for
MIDlet development.

OEM Class Library (LCC)
Given the broad diversity of MEs, it is not possible to fully
address all OEM requirements in by MIDP/CLDC libraries.
These classes may be provided by an OEM to access
certain functionality specific to a given ME. A generic architecture for the proposed solution was

discussed extensively by introducing the patch profile that
separates out platform dependent part from platform
independent part. We also made use of widely adopted
SyncML standard for data synchronization in order to make
software upgrade solution interoperable.

K-Virtual Machine: KVM is a compact, portable Java
virtual machine intended for small, resource-constrained
devices such as cellular phones, pagers, personal
organizers, mobile Internet devices, and so forth. All native
functions accessed by Java code are part of KVM
implementation. 6. REFERENCES

[1] D. Efstathiou, J. Fridman, and Z. Zvonar, “Recent
Developments in Enabling Technologies for Software
Defined Radio”, IEEE Communications Magazine, pp. 112-
117, August 1999.

Native Platform Library: Native platform library includes
APIs provided by OS system calls and native libraries.
Patch Profile native implementation uses this native
libraries and OS system calls performing installation
specific task. For example, DSP installation uses flash
programming routines for re-programming the upgraded
DSP software.

[2] “Globalization of Software Defined Radio”, IEEE
Communication Magazine, February 1999.

[3] “Special Issue on Software Radio”, IEEE ISAC, April 1999.
[4] H. Tsurumi and Y. Suzuki, “Broadband RF Stage

Architecture for Software-Defined Radio in Handheld
Terminal Application”, IEEE Communications Magazine,
pp. 90-95, February 1999.

Hardware: Platform is Motorola’s 280i phone hardware.

[5] R. Shepherd, “Engineering the Embedded Software Radio”,
IEEE Communications Magazine, pp. 70-74, November
1999.

4.2. Patch

[6] SyncML Specifications, http://www.syncml.org Figure 5

Figure 5: Generic Patch Format

 shows the patch packet format used in our
implementation. Patch header gives the “type” information
of the patch used by patch profile to call corresponding
storing and installing functions.

[7] Sun Java J2EE Standard Specifications,
http://java.sun.com/j2ee

[8] Sun Java J2SE Standard Specifications,
http://java.sun.com/j2se

[9] Sun Java J2ME Standard Specifications,
http://java.sun.com/j2me

[10] Mobile Information Device Profile,
http://java.sun.com/products/midp/

[11] SyncML Representation Protocol, Device Managemet
Usage, Version 0.8, 2002-02-13.

[12] SyncML Management Protocol, Version 0.9

Figure 6 shows demonstration sequence for our prototype
implementation in which 280is vocoding software is being
upgraded.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

http://java.sun.com/products/midp/

 : Management
Server : User : Management

Client : Customer Care
Executive

Informs problem in voice quality

Detects from terminal database that terminal

Set up a management session for DSP software upgrade

SyncML package exchange

Send package0 over SMS

Automatic launch of client application

Auto exit and reboot

User notices improved voice quality

has version of DSP s/w with bug in vocoder

Figure 6: Demonstration Flow for DSP software upgrade

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

	ABSTRACT
	INTRODUCTION
	ISSUES IN OTA DEVICE SOFTWARE UPGRADES
	Interoperability
	Variations in ME architectures
	Extensibility

	PROPOSED ARCHITECTURE
	Architecture
	Server Application
	Server Profile
	SyncML Profile
	Client Application
	HTTP
	TM Profile
	Patch Profile
	MIB
	Flash Memory
	Application Patch Generator
	Security Library
	Patch Download Process

	PROTOTYPE IMPLEMENTATION DETAILS
	Patch Profile Design
	Patch

	CONCLUSIONS
	REFERENCES

