
MOBILE DEVICE MANAGEMENT WITH SYNCML

Alan Bok, Alan.Bok@motorola.com,
Sandeep Adwankar, Sandeep.Adwankar@motorola.com,

John Grosspietsch, John.Grosspietsch@motorola.com,
Venu Vasudevan, venuv@labs.mot.com,

Motorola Labs, 1301, East Algonquin Road, Schaumburg, IL 60196
Antonella Rinaldi, antonella.rinaldi@motorola.com

Motorola GSG Italy, Via Cardinal Massaia, 83 - 10147 Torino

 ABSTRACT

Increasing complexity in wireless mobile devices is
creating a need for remote management in a uniform and
standard way. The SyncML specification is an open-
industry, XML-based protocol, designed to facilitate
synchronization of different devices and different
networked data. SyncML based device management (DM)
provides a unique way of managing millions of these
devices by using the SyncML as a standard data exchange
protocol among different entities across the network. In this
paper, we outline the architecture of SyncML based device
management and our work in designing and implementing
both terminal side and server side SyncML DM
functionalities. The paper discusses the end-to-end solution
implemented by our current prototype to provide device
management capabilities on GSM and GPRS based cell
phones. The paper describes SyncML command
implementation in native software to retrieve and configure
phone specific data.

1. INTRODUCTION

Mobile devices like cell phones and PDA’s are becoming

d complexity of
vi

(OTA) remotely, reliably and securely.

lowed to query a
b

ing Use-Case

ll give the Customer
Support Center the ability to remotely query the Terminal

e user and
Customer Support Center the ability to remotely configure

tandard introduced to
make use of widely adopted SyncML standard for data

een a management server and a managed mobile

device.

more complex and providing more functionalities than
those available in the past. With gradual integration of
these devices in a single product, a cell phone is required to
provide all features of a PDA and more. These changes are
leading to a growing number of applications and user data
residing on these multi-purpose cell phones. These devices
have synchronization software allowing the user to manage
and download new applications or synchronize PIM data
with data stored on some different device
 With rapid growth in the number an
de ces, the network operator is finding it extremely
difficult to: reconfigure millions of devices for the latest
firmware version, track the software inventory on each
device and troubleshoot problems in these devices in an
automated manner. The network operator needs the
capability to manage mobile wireless devices Over-the-Air

 What network operators primarily want from a
Terminal Management System is to be al
mo ile device for device parameter values in order to be
helped in diagnostics the device itself, as well as to change
values on the terminal to provide a requested service to the
end customer. Thus following are two use cases of interest
to network operator.

1.1. Terminal Track

The terminal tracking use-case wi

for information such as Manufacture ID, Terminal Model
ID, Software Revision ID, Serial Number and Current Web
Session. During a Terminal Tracking session, the
management operations are performed to locate and obtain
the current status of the mobile devices.

1.2. Terminal Configuration Use-Cases

The terminal tracking use-case will give both th

the terminal for information such as Current Clock, Alert
Tone, Ringer Volume, Ring Tone, Web Session and
downloading images. During a Terminal Configuration
session, the management operations change the
property/behavior of a mobile device.

1.3. SyncML Device Management

SyncML device management is a s

synchronization. SyncML data synchronization standard
supports synchronization of networked data with any
mobile device in a bearer independent way. Thus HTTP,
WAP or SMS bearer can be used transparently by the
SyncML protocol implementation.
 SyncML Device Management consists of three main
blocks:
1. Protocol and Mechanism – define the protocol used

betw

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

2. Data Model – defines the data made available for the
remote manipulation.
Policy –3. decides who can manipulate or update a

syst DM agent and a device
anagement server is developed, both of which make use
 t

The Sy on
defining the data co synchronization and
methods for uniquely naming and identifying records. It

Three element types classes are used to basic elements for
L message. Data class

specifies discrete SyncML data by accepting string as a

SyncML DM management objects are defined in [2]. A
which can be manipulated

by management actions, carried over the SyncML DM

 returned. For

exam

AP setting,
ima

There are two types of SyncML commands: Request and
uper command that

specifies the SyncML command to order the processing of

ple, a certain management object can have a simple
text type so that just simple text values can be set. At the
same time a different management object might store a
more complex type like the WAP Provisioning document
type. Requiring that value set in that object comes with the
WAP Provisioning document MIME type. Other more
complex type for the management object might be the
WAP setting type or installed software type.

Our Device Management implementation supports
different types, starting from simplest one, like text plain,
going towards more complex types like W

particular object on a device.

 We developed a SyncML based device management
em: a terminal side SyncML

m
of he SyncML protocol. The rest of the paper is organized
as follows. Section 2 introduces SyncML Representation
protocol and Section 3 introduces SyncML Sync protocol.
Section 4 describes our SyncML DM architecture. Section
5 describes some implemented terminal management
operations. Section 6 describes terminal profile and Section
7 describes server profile. Section 8 shows performance
results and Section 9 presents conclusions.

2. SYNCML DM REPRESENTATION
PROTOCOL

ge, and software package.

2.3. SyncML Commands Category

Response defined in [2]. Sequence is a s

a set of SyncML commands (Figure 1). There are two
response commands: Status and Results. Status command
specifies the request status code for a corresponding
SyncML command. Result command specifies the SyncML
command that is used to return the results of some request
commands.

ncML representation protocol [1] focuses
ntents of the

also defines protocol commands and message containers.

2.1. Data Description Elements

 Request Commands Format

 Management Tree

anagement objects, in accord to SyncML
ption standard [7],

rganized in a management tree. The

data exchanged in the SyncM

parameter. Meta class specifies meta-information about the
parent element type by encapsulating string type of Type
and Format of data. Item class specifies a message for item
data by using source and target URI information, Data and
Meta classes.

2.2. SyncML DM Data Model

Figure 1 SyncML

2.4. SyncML DM

SyncML DM m

have to be o

management object is an entity,

protocol. Each management object has a type that
determines what kind of management content can be
set/read on that object. A management object might reflect
a set of configuration parameters for a device: actions that
might be taken against this object might include reading
and setting parameter keys and values. A different
management object might be the run-time environment for
software applications on the device: actions that can be
taken against this type of object might include installing,
upgrading, uninstalling software elements.

Operations on a certain management object require
predefined type of value to be sent and, the time the object
being queried, value of that type being

Device Management Tree and Descri

management tree structures all management objects
supported by a device in a hierarchy tree, addressing all
objects with a unique URI. The URI is built traversing the
management tree, where any single node has been assigned
by a unique name.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

3. SYNCML MANAGEMENT PROTOCOL 4. SYNCML DM SOFTWARE ARCHITECTURE

SyncML Device Management Protocol [5] allows
management commands to be executed on SyncML DM
management objects, where two phases (setup and
management phases) are defined. Actions that can be taken
against these objects might include reading and setting
parameter keys and values.

We modeled the terminal Management software system as
a symmetric 3-tiered architecture as shown in . Figure 2

Figure 2 SyncML DM Software Architecture Diagram

3.1. SyncML Security

SyncML Protocol proposes following two security
mechanisms. The SyncML Cred element includes the
credentials information of SyncML message. The
mechanism type and format must be specified in the Cred
element.

3.1.1 Basic Authentication
SyncML basic authentication uses the Base64 Content-
Transfer-Encoding [8] is designed to represent arbitrary
sequences of octets in a form that need not be humanly
readable. The encoding and decoding algorithms are
simple, but the encoded data are consistently only about 33
percent larger than the unencoded data. In the SyncML
Package 1, Sync Header contains Cred element. The type
of credential is "syncml:authbasic" which is basic
authentication and format is "b64" which is Base64
encoding. The encoded data is specified in Data element.

We implemented the overall system for a cell phone use-
case using Java technology: a new Servlet running on a
Linux based Tomcat Web-server has been implemented on
a server side while a MIDP 1.0 complaint MIDlet has been
provided on a T280i Motorola phone. On both side three
main software entities have been designed and
implemented. 3.1.2 MD5 Digest Access Authentication

A User Interface has been provided to an end user
(client application/server application), which allows him to
interact with the system during a SyncML DM session and
provide feedback about the result of executed management
operations. A Terminal Management Logic engine has been
implemented, which reacts to user/server requests enable
the management of the terminal. This engine makes use of
a Namespace mapping media that allows identifying the
management object being managed in the server with
internal data store objects in the client. Namespace defines
the name and value of the management objects using the
management tree that organizes all available objects in the
device, where all management objects are addressed with
unique URIs.

MD5 [9] authentication is another security mechanism
supported in SyncML. This algorithm takes as input a
message of arbitrary length and produces as output a 128-
bit "fingerprint" or "message digest" of the input. It is
conjectured that it is computationally infeasible to produce
two messages having the same message digest, or to
produce any message having a given pre-specified target
message digest. The type in the Cred element in SyncML
package must indicate "syncml:auth-md5" to identify MD5
authentication.

3.2. Capability Exchange

The mobile device must send device capabilities to the
server during initialization. These will enable server to
identify and locate a device in its own server database or to
create a new entry for such a device in a database. In the
Package 1, mobile device sends following device
capabilities

The Terminal Management Logic engine
implementation in the system also provides the client/server
application with the SyncML Parser and XML Parser
features, as well as the implementation of the SyncML
bearer on a HTTP transport layer protocol. At the time we
implemented our prototype, one of the input we used in
selecting the protocol on which implement the data
synchronization protocol bearer, was the opportunity to
exploit the HTTP protocol implementation required on any
MIDP1.0 complaint device. In this way our prototype could
be run on different devices, not just on mobile terminal,

• Manufacturer Name (Motorola)
• Model Name (TP280)
• Device Serial Number (IMEI:0000000000000)
• Language Setting (en-US)
• Device Management Software Version (R1.0.2)

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

which supports the HTTP protocol implementation. Minor
customizations are required to manage these different kinds
of devices and will be outline in next sections. A Data
Repository database has been implemented on both sides
that provides a common interface to get/set the objects
defined in the Namespace and thus to perform the
synchronization on them.

4.1. Namespace Based Data Synchronization

the SyncAgent and
e Application as shown in Figure 3.

Fig

4.2.

cl

nt
form

rforming Over The Air
Terminal Management operations.

5. AL
MANAGEMENT APPLICATIONS

 of the actual implementation of

t phase
ed as many times as the server wishes.

cML Protocol Phases

The management objects name in Namespace is used to
identify the management object being managed across a
network in a horizontal way. At the same time, Namespace
also plays in a role of containing the global management
objects name used both in internal SyncML software and
Client Application running on a MIDP device in a vertical
way. When we combine HTTP/XML Parse
Parser/Sync Engine into a Sync Agent from Figure 2,
Namespace shows as a brid en

r/SyncML

ge betwe

th

ure 3 Namespace Based Data Synchronization System

 Radio Parameter Management Objects Types

ht

can be repeat

SyncML DM Protocol allows SyncML commands to be
executed on networked management objects. Depending on
the types of these objects, actions taken against them mig
include retrieving and setting parameter keys and values.
We classified the set of radio parameters supported by our
prototype, on T280i terminal, in System, Network, Image,
Memory and Audio parameters. The System radio
parameters define terminal characteristics such as
manufacturer identity, device model and identity, software
and hardware version, CLDC and MIDP versions and the

oc
igure 4 Syn

k.
Most of the System parameters are supported as READ

ONLY parameters because the terminal management

operations query these values to the terminal. Jointly with
the Memory parameters, the System parameters are called
Capability Definition parameters. The Memory parameters
provide in term of capability definition of the terminal,
information about the maximum and available memory on
the terminal and the memory schema supported by this.
Differently all Network, Image Data and Audio parameters
are READ/WRITE parameters. They allow us to track and
configure WAP /Web setting values as well as differe

at of terminal supported images and ring settings.
Carrying out operations such as adding, deleting or

replacing all these parameter types require native
implementation in C on the terminal. This native
implementation has been wrapped by a new Terminal
Management Java profile residing besides the MIDP 1.0
profile: this new profile allows pe

 CLIENT AND SERVER TERMIN

The Client application in Figure 2 implements the Terminal
Management MIDlet to allow a sync server to retrieve
terminal information from the T280i phone and remotely
configure it by changing data. The Server application, on
the other side, manages a resource on behalf of multiple
clients by storing the Networked Data resources in a MIB
(Management Information Base) and providing a uniform
access interface regardless
the resources it manages.
 The Client and Server applications jointly, perform the
management operations on the T280i terminal according to
SyncML DM protocol specifications [5]. The two
applications communicate through the SyncML DM
protocol using the services provided by the Client/Server
Sync Engine and Terminal/Server Profile in order to
perform a Sync Terminal Management session. A typical
session is defined two phases of SyncML DM
protocol shown in Figure 4, where the Managemen

 by the

F

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

 During the Set up phase, the Server might send a
Package 0 to the Client in order to perform a Server initiate
synchronization session. Because many devices cannot
continuously listen for connection from a management
server, most of them can receive unsolicited messages, so
called, notification messages [6]. Our SyncML Server
application, when a need for server initiated sync sessions
is recognized, sends a SMS message to the terminal as a
notification to cause the phone to initiate a connection back
to the management server.
 The SMS, for prototype purpose, has been coded in 7-
bit default GSM format and comes along with the Alert
Command (Alert Code 1200 for server initiated session [2])
in order to trigger a specific application on the phone.
Triggering the Client application is automatic and it has
been implemented in C code. The auto-trigger code allows
the KVM running on the phone to wake up automatically in
order to run the specific terminal management application.
 The Client application might be run in a silent mode if
the user has enabled the auto-start and auto-exit options for
the MIDlet. The auto-start and auto-exit features allow the
client application to connect back with the server, perform
a terminal management section and exit without requiring
any user interaction. In accord to , once the client
application is started, after opening a HTTP connection
towards the server, it sends its own credential and device
capabilities information to the server in order to perform
Package 1. With the Package 1 the terminal application
provides the server with device capabilities such as
Manufacturer name, Model name, Device serial number,
Language setting and Device management software version
using the DevInfo class implementation defined by the
Sync Engine. On receiving Package 1 from the Client, the
Server application can identify and locate the terminal in its
own internal database (MIB) or, if this terminal has never
registered with the server, the server application creates a
new database entry for it. In both cases, the server replies
to Client agent sending its credential information with
Package 2. The Package 2 might already include a first
management operation. Thus the management actions
might start from Package 2 of SyncML message flow and
can continue for Package 4, Package 6 and so on. For any
management action received by the terminal application, a
response command will be sent back to the client
containing the result or the status for the corresponding
management action required by the Server application.

Figure 4

 We implemented three different types of management
actions in order to allow our prototype to support the use-
cases applications: Tracking operations, Configuration
operations and User Interaction operations. The tracking
operation allows the Device Management Server to query
the mobile terminal for device parameters: it has been
implemented making use of the SyncML Get command.

-a shows an example of a tracking operation

requested by the Server querying an active ring on the
mobile. At the same time, when the Server application
wants to change parameter values on management objects
residing on the mobile device, the server has to use a
configuration operation. This operation is required to
provide a requested service to the end customer. The
SyncML Replace command has been used to implement
this type of operation. -b illustrates the command
to replace an active ring tone to value 2. If a classic ring
tone is mapped to number 2, as it is on T280i phone, then
with this operation the classic ring tone becomes the
selected or an active ring tone. The last type of operation
supported by our prototype is the User Interaction
operation. This kind of operation allows the Server
application to interact with the user to notify and obtain
confirmation for a particular management action on the
mobile device. The SyncML Alert command has been used
for sending custom content information to the recipient.

-c shows a SyncML Alert asking the user to
confirm the operation of updating to fewer ringer tones.

Figure 5

Figure 5

Figure 5

Figure 5 Management Actions Examples

6. TERMINAL PROFILE

In designing our prototype software architecture, we had to
extend the current set of profiles already available on
mobile devices with a new one in order to access to actual
hardware and software of our T280i phone. Actually most
of the information a network operator wants to set/get from
a mobile is provided in native platform dependent format:
any manufacturer supports his own internal format for data
and the way to retrieve and set it on a device. In order to
access this kind of information we implemented in native
code, but provide a standard interface to Java applications:
the Terminal Profile defines this standard way to access
underlay platform.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

 The Terminal Profile in , along with Platform
Access Software, defines a set of classes and interfaces,
supported by native code implementation, allowing the
Client Sync Engine to interact with the native platform of
the mobile and to manage/configure it.

Figure 2

 It also contains device specific classes and code that
allows SyncML Engine software to access device-specific
functionality such as persistence storage as well as
platform-dependent parameter values. The Terminal Profile
itself has been implemented providing a set of Java APIs
compatible with other profiles running on the terminal.
These Java APIs consist of a set of Java classes designed to
handle domain-specific functionalities that greatly enhance
the capabilities of terminal management application. All the
applications developed using these classes are portable
across different MIDP devices. The Terminal Profile Java
APIs make use of the Platform Access Software to exploit
native functionality such as querying device information as
well as sharing data with native applications. The Platform
Access Software is a platform specific component in CLDC
written in platform dependent language. It is a not a
portable component and is totally dependent on platform.
In order to support the management operations required by
the Client Sync Engine through the Terminal Profile, the
Platform Access Software executes the newly designed AT
command on the native platform. The Terminal Profile
provides the interface to this native function from Sync
Engine and any developed application. Our choice of
implementing Terminal Management operations in terms of
executing newly defined GSM AT commands has been
driven by the will of minimizing the impact of porting the
prototype on different platforms.

7. SERVER PROFILE

The server profile provides a management tree
representation for the devices being managed (as stored in
MIB). The current implementation of SyncML Server is
that it is stateless (i.e., it does not maintain any state of
terminal). The Replace operation is normally preceded by a
Get operation to check whether the SyncML operation is
required.

8. PERFORMANCE

Table 1 shows some Sync session performance
benchmarking. The table shows the cost of an OTA sync
section in time, when different management object types
have to be configured over the phone on GPRS networks
provided by two different Europe operators.
 The timing results outline how more complex
management objects require more execution time to
complete a SyncML DM session between the Server
application and our phone. By comparing the time

requested for the same type on the two different networks,
it’s clear that the network delays impact the overall
operation time. A 20% network delay time is due to the
GPRS network provided by the second operator in the
table.

Table 1 Sync Session Performance Measurement in msec

Managemen
t Object
Type

No of bytes
exchanged

Sync
session
time (1)

Sync
session
time (2)

DevInfo 2,144 18473 25465
Simple
(plain/text)

3,729 32994 43037

WAP 4,315 35900 46923
Image 6,089 46584 57750

9. CONCLUSIONS

SyncML for device management has potential to become a
standard way of managing millions of mobile devices. Our
experiences with SyncML software architecture and
implementation suggest that the protocol is very much
suited for mobile devices having very limited capability in
terms of memory and networking.
 The extension of SyncML protocol and Sync Engine to
perform device management tasks was considerably simple
programmatically and sufficiently powerful to support all
tracking and configuring needs. By enabling the Mobile
Equipment (ME) to enhance its features over the air with
the help of the servicing server, the duration for
maintenance is reduced drastically, and also the user can
chose a suitable time for maintenance.

10. REFERENCES

[1] SyncML Representation Protocol Version 1.0.1, 2000-
05-30

[2] SyncML Representation Protocol, Device Managemet
Usage, Version 0.8, 2002-02-13

[3] SyncML Device Management Demonstration, 2002-
01-12

[4] SyncML Device Information DTD, Version 1.0
[5] SyncML Management Protocol, Version 0.9
[6] SyncML Notification Initiated Session, Version 0.92
[7] SyncML Device Management Tree and Description,

Version 1.1
[8] IETF RFC 1521: MME (Multipurpose Internet Mail

Extensions): Mechanisms for Specifying and
Describing the Format of Internet Message Bodies

[9] IETF RFC 1321: The MD5 Message-Digest Algorithm

Formatted: Font: Not Bold

Deleted: Table 1

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

	ABSTRACT
	INTRODUCTION
	Terminal Tracking Use-Case
	Terminal Configuration Use-Cases
	SyncML Device Management

	SYNCML DM REPRESENTATION PROTOCOL
	Data Description Elements
	SyncML DM Data Model
	SyncML Commands Category
	SyncML DM Management Tree

	SYNCML MANAGEMENT PROTOCOL
	SyncML Security
	Capability Exchange

	SYNCML DM SOFTWARE ARCHITECTURE
	Namespace Based Data Synchronization
	Radio Parameter Management Objects Types

	CLIENT AND SERVER TERMINAL MANAGEMENT APPLICATIONS
	TERMINAL PROFILE
	SERVER PROFILE
	PERFORMANCE
	CONCLUSIONS
	REFERENCES

