
SELECTING APPROPRIATE HARDWARE
FOR SOFTWARE RADIO SYSTEMS

Philip Mackenzie (Networks and Telecommunications Research Group (NTRG):
Trinity College, Dublin, Ireland; mackenp@tcd.ie); Linda Doyle (NTRG;

Linda.Doyle@tcd.ie); Keith Nolan (NTRG; nolanke@tcd.ie); Donal O’Mahony (NTRG;
Donal.OMahony@cs.tcd.ie)

ABSTRACT

Software radio is an emerging technology that offers great
opportunities for the development of future wireless
systems. Many different views exist on how to build both
the software and hardware required by a software radio
system. This paper focuses on the use of general-purpose
processors for developing software radio hardware. A
software radio testbed is used to demonstrate the
advantages but also limitations of using a general-purpose
processor. To overcome these limitations, a particular
hardware approach is presented.

1. INTRODUCTION

Wireless technology is playing an increasingly important
role in global communications. Coupled with this change,
software radio has emerged as an enabling technology for
the implementation of existing and future wireless
systems. Ultimately, software radio promises to realize
wireless devices that are flexible, upgradeable and future-
proof.

Software radio is a technology that draws on many
different disciplines; mainly software, hardware, digital
signal processing and RF design. Among these
disciplines there is a general consensus that software radio
will be an important and enabling technology for wireless
communication. In contrast though differing views are
emerging as to how these systems should be
implemented. The main conflicting views are between
purely hardware and purely software approaches. Many
existing hardware manufacturers assume that software
radio technology will consist entirely of custom hardware
(ASIC, FPGA or DSP) designs. The belief is that a
purely hardware approach will provide the best
performance, reliability and power consumption. On the
other hand, some software-based approaches are proposing
the use of general-purpose processors (GPPs) and

operating systems. This approach claims to offer the most
flexible designs while allowing rapid system development
and code reuse as commonplace software development
tools can be used.

Currently, neither a purely hardware or software approach
can handle all the requirements of software radio systems,
in particular the requirements proposed by standards such
as the US Department of Defense SCA. Purely hardware
designs cannot implement some high-level software
abstractions required by software architectures, e.g.
CORBA. Likewise, GPP systems and operating systems
cannot yet deal with the data rates and latency
requirements of existing wireless schemes. This raises the
question as to what hardware to use when implementing a
software radio. In this paper we address this issue by
analyzing the high level design typically used to realize a
software radio. We present a working software radio test
bed that demonstrates the advantages but also limitations
of using a GPP. These limitations lead us to propose a
particular hardware approach that maintains the flexibility
of a GPP design.

Section 2 presents an overview of the common approach
used in software radio implementations and presents a
software radio test bed capable of implementing these
designs. Section 3 discusses both the advantages and
limitations of using a general-purpose processor as a
software radio platform. Section 4 discusses various
hardware designs. Section 5 presents conclusions.

2. A SOFTWARE RADIO TESTBED

A high level view of a typical software radio
implementation is shown in Figure 1. Most designs are
based around a common approach, [1]. In reception, the
incoming IF signal is digitized, down converted to
baseband where the remainder of signal processing is
performed by signal processing algorithms implemented

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

as specially designed hardware or software. Likewise, a
signal to be transmitted is modulated via signal
processing,

digitally up converted to an intermediate frequency and
converted into an analogue signal for transmission.

Our software radio test bed allows the rapid development
and testing of such radios by breaking down a typical
software radio implementation, into components. The
system runs on Windows 2000 and consists of two major
elements, a minimal hardware front-end to digitize radio
signals and a software radio engine (SWE). The core of
the test bed is built around the SWE, a component based
implementation that allows the user to create different
software radio implementations easily. It has at its core
the ability to abstract software radio implementations
from underlying hardware capabilities and has been
designed to allow for maximum reconfigurability. It
comprises of three modules as depicted in Figure 2, a
repository of signal processing components, an XML
interface and a software radio runtime environment.

The component repository is a collection of components
that can be used to create a software radio. The SWE
allows the creation of different software radios by
connecting together different signal processing functions
to form the specific wireless scheme of interest. All signal
processing functions are implemented as components that
conform to a specific interface defined by the SWE. In
addition, each component (e.g. channel extractor, FIR
filter) exposes a set of properties that can be used to
configure the component for a particular scenario. Within
the component structure, encapsulation can be used to
create new components from groups of existing ones.
Additional components can also be added to the
repository dynamically at runtime thus offering an even
great degree of flexibility.

The XML interface is responsible for all interaction with
the software radio interface. It performs two main
functions. Firstly the XML interface provides a
mechanism for users to describe different wireless schemes

using XML. The XML document is used as an input to
the software radio engine to create the chosen software
radio implementation. The XML interface is responsible
for priming and connecting all signal

processing components according to the structure defined
in the XML document. Secondly, the XML interface
produces XML describing the processing capabilities and
components of a particular software radio engine. This
facilitates a type of service discovery whereby the
capabilities of a SWE can be determined and evaluated.
As different SWE’s will have different hardware,
processing capabilities and sets of components, different
SWEs will be capable of running different wireless
schemes.

The software radio runtime environment is responsible
for the execution and control of a particular radio
configuration (as defined in the XML document). It
controls the flow of data and signals through the software
radio and as such provides services to all signal
processing components. It can use hardware specific
knowledge to optimize the performance of a SWE.
Abstracting the runtime as a separate module allows the
runtime to monitor the execution of the software radio
implementation and thus gather information on
performance and component interaction.

Using the SWE environment provides a platform
independent way of describing different radios. Once a
specific part of a wireless scheme has been implemented
as a SWE component, it can interact with all other
components in the engine. SWE components can
communicate through the software radio runtime and
encapsulation can be used to create more complex
components from sets of fundamental signal processing
components. More information about the SWE
environment can be found in [2][3]. This opens up many
possibilities for developing novel wireless designs with
dynamic capabilities not possible with traditional RF
design . It follows that it is greatly advantageous to have

Software
Radio Runtime

Software Radio Engine

Component
Repository

XM

Interfac

Figure 2 - Software Radio Engine

RF
Hardware

ADC

DAC

Digital
Up/Down

Conversion

Baseband
Signal

Processing

Input/Output

Figure 1 - A Typical Software Radio Implementation

Antenna

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

as many aspects of the system as possible implemented as
components and thus running on a general-purpose
processor. The general-purpose processor has some
limitations though, which are discussed in the next
section.

3. HARDWARE LIMITATIONS

When considering the flexibility of a software radio
design, a constant tradeoff exists between flexibility and
hardware capabilities. Ultimately the hardware choice
depends on the requirements of the end application.
Sometimes, a specific application limits the choice, for
example a power conscious wireless device may require
the use of a low power DSP. In this paper we are focusing
on achieving the highest level of flexibility capable with
current hardware technology.

The general-purpose processor (GPP) approach is an
excellent choice when complete control and flexibility are
required in a software radio design. The operating system
provides abstractions such as virtual memory and
multithreading which make the development of software
radio systems much easier. Development environments are
readily available and a GPP system can be programmed
using familiar languges such as C/C++. This has a great
advantage over DSP/ASIC based systems that often
require specialist knowledge to fully manipulate. The
drawback of using an operating system is that it is
increasingly difficult to guarantee the execution time of
code. This is caused by the multithreaded nature of
operating system kernels that work by sharing out slices
of CPU time between different threads. Operating systems
such as Linux and Windows cannot guarantee that threads
will always maintain execution as required by the software
radio implementation. For example, delayed execution of
code could result in timing glitches for digital systems or
interrupted audio for analogue applications. There is the
option of using a real-time operating system but this can
often require specialist programming tools and knowledge
which contradicts the advantage of being able to use
standard programming tools and maintaining cross
platform code. Another limiting factor of the GPP is
processing power and more importantly the typical board
architectures used by PCs. Although processor speeds
greater than 2GHz are commonplace today, the limiting
factor in these implementations is the speed of the system
bus, PCI bus and memory.

Figure 3 shows the advantages and disadvantages of
moving towards a GPP design. To summarize, a GPP is a
great advantage if the application meets the following
requirements:

• An efficient method for transferring data between the
CPU/memory and radio front-end must exist.
Facilities such as DMA should be used to reduce the
amount of CPU time used in transferring data to/from
the radio front-end as this processing power will be
required for digital signal processing.

• The wireless schemes being implemented must be
able to cope with glitches occurring due to
multithreaded operation. This may not be an issue for
analogue schemes such as voice where glitches or
delays on the order of milliseconds can possibly go
unnoticed.

• A compatible operating system and development
tools are available

4. HARDWARE ARCHITECTURES

The key issue that differentiates software radio hardware
from conventional designs is that their wireless interface
cannot be re-programmed once a device has been
manufactured and deployed. To illustrate, figure 4 shows
the typical functions provided by a GSM chipset.
Chipsets such as these offer programmable logic and some
programmable DSP options but these are only useful at
the design stage. What is required is a binding between
the lower level wireless interface and high-level software
abstraction. Figure 5 shows the major hardware
components involved in such a system. In most of these
cases including the GSM chipset, a custom designed

Discrete
Components

ASIC

DSP

GPP

Advantages:
_ Increasing

flexibility
_ Increasing real-time

control
_ Decreasing

development time

Moving towards a GPP
design:

Disadvantages:
_ Increasing power

consumption
_ Increased latency
_ Decreased

processing power

Figure 3 - Implications of moving towards a GPP design

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

controller runs the radio interface and has limited
configurable abilities.

A better approach would be to use a general-purpose
processor such as the x86 to perform all digital signal
processing tasks (see figure 6). In conjunction with an
operating system, the wireless interface would become
much more flexible. In such a system new wireless
standards are realized by running different software
programs on the GPP CPU. Due to the limitations
presented in section 3, designs like this are not readily
realizable with current GPP technology. A better approach
is shown in figure 7 where a balance is struck between
using a programmable DSP and a GPP. In this hardware
architecture the GPP performs monitoring and control of
the interface and also some baseband signal processing at
low data rates. Larger signal processing tasks are handled
by a programmable DSP, thus reducing the amount of
data being transferred in and out of the PCI bus. In this
scenario the GPP can reprogram the DSP in real-time thus
offloading processing, while still maintaining control over
the wireless device. This coupled with a component based
engine as shown in section 2 leads to a more future proof
design that has all the advantages of code reuse, rapid
development, etc.

6. CONCLUSION
In this paper we have shown both the advantages and
limitations of using a general-purpose processor as the
core of a software radio implementation. We looked at

various high-level approaches to building these systems
and suggested that with current hardware capabilities a
hybrid approach involving a GPP and reprogrammable
DSP offers the best compromise between performance and
flexibility.

[1] J.H. Reed, Software Radio, A Modern Approach to Radio
Engineering, Prentice Hall, 2002

[2] L. Doyle, P. Mackenzie, D. O’Mahony, K. Nolan, D.
Flood, “A General Purpose Processor Component Based
Software Radio Engine”, Proceedings of the Second
European Colloquium on Reconfigurable Radio, June
2002

[3] Nolan,K.E., Doyle,L., O'Mahony,D. and Mackenzie, P.,
‘Signal Space based Adaptive Modulation for Software
Radio’, in Proceedings of the IEEE Wireless
Communications and Networking Conference

[4] Mackenzie, P., Doyle, L., O’Mahony, D. & Nolan, K.,
‘Software Radio on General Purpose Processors”, in
Proceedings of the First Joint IEI/IEE Symposium on
Telecommunications Systems, Nov. 01

DSP (Modulation, Coding, etc)

ADC DAC

Custom Controller

Chipset (Up/Down
Conversion)

Analog RF Hardware

Figure 5 - Typical Implementation

GPP CPU

PCI Interface

Programmable DSP

ADC DAC

Chipset (Up/Down
Conversion)

Analog RF Hardware

High Level Software

Figure 7 - Compromise

Analog
Baseband

Digital
Baseband

Audio
CODEC

RF
Interface

Digital control

Antenna Audio Input/Output

Figure 4 - Functions provided by a typical GSM chipset

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

