

RESOURCE ALLOCATION IN SOFTWARE RADIOS USING CCMs BASED ON

THE SCA

Srikathyayani Srikanteswara (Mobile and Portable Radio Research Group (MPRG),
Virginia Tech, Blacksburg, VA; swradio@vt.edu);

James Neel (MPRG); Jeffrey Reed (MPRG); Shereef Sayed (MPRG)

ABSTRACT

Reconfigurable hardware enables hardware paging,
which in turn adds an additional dimension to the
resource allocation problem. Software radios that use
non-allocable hardware like general purpose processors
attain flexibility mainly through software, which can
sometimes lead to a non-optimal hardware
implementation for the system in use. Reconfigurable
hardware like FPGAs and Configurable Computing
Machines (CCMs) provide the potential for further
optimization of the hardware to meet system
requirements. In addition, CCMs allow hardware
configurations to be rapidly paged in and out of the
system so the hardware can be continually optimized for
performance providing the opportunity for performance
that dramatically exceeds traditional processing
solutions. However, the SCA does not currently support
CCM implementations. In this paper we outline the
process required to include CCMs into the SCA.
Although we suggest some modifications to the Core
Framework (CF), these changes are straight-forward to
implement and impose a minimal impact on the existing
CF components. Since CCMs present an important class
of reconfigurable hardware that are especially well-
suited for software radios, their inclusion in the SCA,
the emerging standard for software radios, will provide a
major breakthrough for designing efficient and flexible
radios.

1 INTRODUCTION

The SCA is emerging as the unifying standard for

software radios, bringing them a step closer to
commercialization and widespread use. The SCA is
based on an Open Systems Architecture and sound
object oriented design principles that facilitate modular
paging of systems and algorithms within the radio.
Presently, this paging is performed only in software.
However, a more optimal software radio solution should
be able to tune its hardware to the system in use, thereby
optimizing power, silicon area, and hence form factor.

Such optimization should help overcome the major
hurdles for SCA implementations in the handheld
domain, which have especially stringent size and power
requirements. Since such optimal systems are still hard
to develop, the designer’s goal is to maximize the
number of supported radio functions with a minimum
amount of hardware. Hardware paging presents an
elegant solution to this problem, by allowing algorithms
to be implemented on physical hardware as needed.
While DSPs and FPGAs, which are both currently
supported by the SCA, provide different levels of
reconfigurability and aid in implementing flexible
designs, CCMs, the latest in reconfigurable technology,
is the only class of processor that can currently provide
real-time paging of algorithms on hardware. Since
CCMs are not currently considered by the SCA, in this
paper we introduce a framework for handling CCM
technology within the SCA. To ease this integration,
this is performed in a manner similar to the techniques
currently employed for other types of processing
hardware. The following sections present an overview
of the hardware configuration mechanisms in the SCA
and demonstrate how CCMs can be integrated into the
SCA with minimum modification to the CF.

2 THE SOFTWARE COMMUNICATIONS

ARCHITECTURE

Shown in , the SCA is an object-oriented
architecture where the functionality of the radio is
implemented through the use of objects. These objects
are used to implement the software components of a
waveform and to control, manage, and model hardware
components. To provide the links to build these objects
into a functioning software radio, the SCA defines
critical interfaces and services in the core framework.
To manage the instantiation and destruction of these
objects, to facilitate the communication between the
objects, and to allow objects written in different
languages to interact, the SCA utilizes the services of the
Common Object Request Broker Architecture
(CORBA).

Figure 1

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

mailto:swradio@vt.edu

Figure 2 CORBA Messaging

IDL
Stub

Client Server

IDL
Skel

ORB Core

Object
Adapter

ORB
Interface

IDL
Stub

Client Server

IDL
Skel

ORB Core

Object
Adapter

IDL
Stub

Client Server

IDL
Skel

ORB Core

Object
Adapter

ORB
Interface

 As many domains are not able to support the

processing overhead of a full CORBA implementation,
the SCA only requires an implementation of
minimumCORBA. MinimumCORBA is an attempt to
reduce the overhead to an acceptable level while still
retaining the most desirable features of CORBA. For
instance, in minimumCORBA, all of the dynamic
invocation operations are not included. Thus the
implementation repository and interface repository that
enable client objects to search for objects by type instead
of name are greatly reduced. Additionally, the number
of ORB interfaces are reduced, and the dynamic
skeleton interface, dynamic invocation interface, and
dynamic value management are eliminated [5].

Figure 1 SCA Software Architecture

2.1 The Role of CORBA in the SCA

Standardized by the Object Management Group (OMG),
CORBA is a software architecture used to enable the
communication between objects and to allow objects to
transparently use the services of other objects in a
distributed processing environment. The structure of
CORBA is built around four key components: an object
request broker (ORB), object services, common
facilities, and application objects [5]. CORBA
implements communications on a peer-to-peer basis
wherein a client object requests the services of a server
object. It is the responsibility of the ORB to abstract the
interface of the server object, so the client object need
not know the server’s location, implementation,
execution state, or the communication mechanism used
to relay information between client and server [4]. The
object services component is used to support the basic
functions of object implementations. Examples of
objects services include Life Cycle Services used for
creating, deleting, copying, and moving objects, and the
Naming Service used to retrieve the services of a
specific object. A reduced version of the Naming
Service is used within the SCA for purposes such as
ensuring that Application Factories build the correct
components. Application objects are the actual objects
that use the services of the ORB. These are identical to
the application level objects of the SCA illustrated in
Figure 1.

2.2 Hardware Resource Management in the SCA

To aid in the management of hardware, the SCA

introduces a hardware class hierarchy. The hardware
class structure hierarchy ranges from the highest level of
abstract hardware, such as the SCA Compliant
Hardware class, to classes dedicated to specific types of
hardware components like a Processor Class or GPS
Class. Each hardware class is uniquely defined by its
attributes. The interfaces to manage the components,
attributes and their corresponding values define the
functional requirements of an SCA complaint hardware
component.

The SCA hardware class hierarchy is shown in
Figure 3. The Chassis class defines the attributes for
form factor, backplane, interconnection of the hardware
modules and similar functions. The Chassis class is also
responsible for routing data correctly through the
software radio. The Hardware Modules class contains
various subclasses that define specific types of
hardware. For instance, the RF hardware class contains
the software abstraction of all the RF hardware available
to the software radio. Similarly, the I/O class is
responsible for defining the I/O interfaces to the
software radio. Generally, each hardware class inherits
attributes from a parent class to refine the attributes that
are unique to that type of device.

To aid in the implementation and abstraction of the
objects in CORBA, the interfaces to all of the
application objects are implemented in Interface
Description Language (IDL). IDL is an implementation-
neutral way of describing the interface of an object that
is not specific to any programming language. For
implementation purposes, CORBA uses language
mappings between an object’s native language and IDL
in order to handle objects. As shown in Figure 2,
objects can then communicate with an ORB through
IDL or directly through the ORB interface. Within the
SCA, all CF interfaces are written in IDL.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

Figure 3: Current SCA Hardware Class Hierarchy

The hardware devices that correspond to these

classes will have values for the relevant attributes and
will be selected based on a platform’s physical
requirements. The device attributes that are used in the
creation of waveform applications and provided in a
Device Profile readable by CF applications.

This hardware class hierarchy is accompanied by a
hardware rule set that stipulates certain conditions for a
piece of hardware to be considered SCA compliant, such
as requiring the device vendor to provide a domain
profile for the hardware component. With the proper
application of the rule set and with procurement
direction, hardware modules that are common to
multiple domains can be identified.

To use these hardware devices, the CF specifies the
use of special software classes, managers, and interfaces.
Two critical software classes are Resource and Device.
A Resource is the fundamental component in the SCA
and provides certain basic interfaces, such as those
required for port and lifecycle operations. An
application, itself, is a Resource and may consist of
multiple Resources. A Device is a Resource that serves
as a software abstraction of a physical device and
provides interfaces for directly controlling and using the
device. The Device class is further refined by the
LoadableDevice, ExecutableDevice, and
AggregateDevice classes that provide interfaces for
loading information, executing code, and handling
devices. ModemDevice, I/ODevice, and SecurityDevice
are examples of Devices defined in the SCA. The
physical hardware device is represented by a software
abstraction that can directly control the physical
hardware through the Device interface. Actual
applications are then implemented on devices through
the use of a DomainManager and DeviceManagers.

A domain manager, interfaced with by a
DomainManager class, manages the software
applications, application factories, hardware devices and
device managers within the system. Note that each of
these components would also have an associated

interface class. The resources being managed by the
domain manager are CORBA objects implementing the
Resource interface. The domain manager is also
responsible for allocating the hardware devices to an
application based on various factors known by the
domain manager, such as the current availability of
hardware devices, behavior rules of a resource and the
loading requirements of a resource.

SCA-Compliant Hardware

Chassis Hardware Module(s)

RF Processor INFOSEC I/O

Power Supply

Modem

GPS Reference Standard

SCA-Compliant Hardware

Chassis Hardware Module(s)

RF Processor INFOSEC I/O

Power Supply

Modem

GPS Reference Standard

In order to use a device, certain capacities (e.g.,
memory, performance, etc.) must be obtained from the
device. To aid in this process device managers are used.
As the capacity properties will vary among devices and
are described in the device’s Device Profile. A device
may have multiple allocable capacities, each having its
own unique capacity model. It is the responsibility of
the device manager to keep track of what capacities are
available and what capacities have been consumed by
resources.

Figure 4 shows the interaction between various
components of the CF and the hardware elements. The
interactions shown in the figure focus on the steps
needed to program the hardware for an application.
When an application includes a device, it means that
specific parts of the application have to be implemented
on a particular type of device. The domain manager
requests the device manager to program devices based
on anapplication’s request. The domain manager
allocates the hardware based on the device profile and
information provided by the device managers. When the
application does not request a particular hardware
device, the domain manager is responsible for allocating
the hardware devices for the application.

Non-Core Radio
Application

Resource

Domain ManagerDevice Manager

Corba
adapter

Hardware Device

CORBA SCA

POSIX

Network Lan

Board Support Packages

Registers
with

Oversees 1

1,… *

Hardware Device

1, …*

0,… * 0,...*

1,…*

1, …* 1, …*

1,… *

O
ve

rs
ee

s

O
ve

rs
ee

s

1,…*

1

1, …* Non-Core Radio
Application

Resource

Domain ManagerDevice ManagerDevice Manager

Corba
adapter
Corba
adapter

Hardware Device

CORBA SCACORBA SCA

POSIXPOSIX

Network LanNetwork Lan

Board Support PackagesBoard Support Packages

Registers
with

Oversees 1

1,… *

Hardware Device

1, …*

0,… * 0,...*

1,…*

1, …* 1, …*

1,… *

O
ve

rs
ee

s

O
ve

rs
ee

s

1,…*

1

1, …*

Figure 4 Hardware Resource Management in the

SCA

2.3 The Role of Adapters in Controlling
Hardware in the SCA

As minimumCORBA only supports language

mappings of IDL to C++ and Java, legacy code written

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

in other languages would not be directly supported by
the SCA. Additionally, processing elements that do not
support the interfaces specified by the CF would be
unusable by CORBA enabled Resources. To solve this
problem, the SCA uses Adapters which are specialized
Resources or Devices that translate the interface of a
non-CORBA capable devices or code to a CORBA
usable interface. For the CORBA enabled Resources,
this process is transparent and the Resources can
continue to use CORBA as a messaging service. The
adapter concept is illustrated in Figure 5.

 Figure 5 Adapters in the SCA [6]

3 CONFIGURABLE COMPUTING MACHINES

The development of Configurable Computing
Machines (CCM) allows designers to achieve flexibility
in hardware without sacrificing power or silicon
efficiency. The CCM concept tries to retain the
desirable characteristics of FPGAs and ASICs for a
particular application or a suite of applications while
achieving a flexibility to rapidly switch between
applications. CCMs have static hardware for frequently
used cores like multiplication, which result in efficient
radio designs. Other features that are typically used to
enhance the CCMs could be strategically placed shift
registers, circular buffers, large number of I/O pins for
good data throughput, etc. These components and the
connections between the components are programmable
to allow for reconfiguration. Conceptually, CCMs are
customizable ASICs or FPGA with a coarser granularity
that is better suited for signal processing applications.
Some CCMs have a scaleable architecture that enables
algorithms to be scaled across multiple CCMs. This
extends the capabilities of the CCM architecture and
provides for an additional level of flexibility in the use
of the CCM hardware.

Virginia Tech has developed a scalable CCM
called Stallion that is specifically suited for flexible,
high-throughput, low-power computations and is based
on stream-based processing [1]. Stallion supports fast

run-time reconfigurability, which makes it attractive to
soft radio applications. Stream based processing uses a
common bus for data as well as programming packets
with a header that indicates the nature of the stream
packet. Further, the stream packets also indicate the
next module where subsequent programming packets
should be forwarded. Thus each programming stream is
independent and self-steering,. This permits partial
reconfiguration as one stream can be reprogrammed as
other streams continue processing.

Figure 6 shows the architecture of Stallion. It
consists of two meshes of 8x4 functional units and
multipliers connected by a crossbar, and a network of
flags and busses. Stallion has six dataports that can be
dynamically programmed to be either input or output
ports. From the dataports, the stream proceeds through
the crossbar and then to either mesh of functional units.
After being processed in the functional unit, the stream
can continue through the mesh, go back through the
crossbar to any other part of the chip, or off the chip via
a data port.

CORBA Middleware

Compliant
Device

Compliant
Device

Compliant
Device

Non-CORBA
Device

Adapter

Non-CORBA
Device

Adapter

Waveform / Application
Legacy
Code

Adapter
Compliant

Object
Compliant

Object
Compliant

Object

Device
Manager

Domain Manager

Device
Manager

Device
Manager

Device
Manager

Device
Manager

CORBA Middleware

Compliant
Device

Compliant
Device

Compliant
Device

Compliant
Device

Compliant
Device

Compliant
Device

Non-CORBA
Device

Adapter

Non-CORBA
Device

Non-CORBA
Device

Adapter

Non-CORBA
Device

Adapter

Non-CORBA
Device

Non-CORBA
Device

Adapter

Waveform / Application
Legacy
Code

Adapter

Legacy
Code

Legacy
Code

Adapter
Compliant

Object
Compliant

Object
Compliant

Object
Compliant

Object
Compliant

Object
Compliant

Object

Device
Manager
Device
Manager

Domain ManagerDomain Manager

Device
Manager
Device
Manager

Device
Manager
Device
Manager

Device
Manager
Device
Manager

Device
Manager
Device
Manager

 The output of the functional unit can be routed
locally to adjacent functional units or multipliers sent
elsewhere on Stallion through the crossbar or the skip
busses. The skip bus is a special kind of bus that sends
data to any other functional unit in a mesh within one
clock cycle. Finally, each functional unit is capable of
generating and processing an array of flags, which can
be used to control and monitor the functional unit’s
operation.

IFU MESH
(computational)

Integer
Multipliers
(allocable)

Programmable
Data Ports

“Smart” Crossbar
Network

Stream I/O

Allocable Resources

Figure 6 Stallion Architecture

4 PROPOSED APPROACH TO INTEGRATING

CCMs INTO THE SCA

Integrating CCMs into the SCA requires that the CF
include methods for programming, downloading data
and interacting with the CCM. Ideally, these operations
should be done with a minimal impact on existing SCA
components and support the operations described in the
previous sections. As a CCM will not in general be
CORBA compliant, the first step that must be taken is to

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

4.1 Example Implementation introduce an Adapter resource to provide an interface
that is usable by the other resources in use in the radio.

In this Section, we present an overview of the
process to include the Stallion CCM in a SCA compliant
radio. A similar procedure can be followed for other
CCMs. First an Adapter would need to be created to
map the messages received from the device manager
into the streaming format that Stallion uses. This
adapter would also be responsible for ensuring that
individual functional units are programmed as specified
by the device manager. The Layered Radio Architecture
developed at Virginia Tech [7] could also server this
purpose where the tasks of the adapter are separated into
the Soft Radio Interface Layer and the Configuration
Layer. Next a Device Configuration Profile would have
to be constructed for Stallion and should appear as
shown below in

 The first step to managing the implementations
on a CCM is to introduce a hardware class to describe
the allocable attributes. As the CCM will be used to
perform processing operations, this class will be easiest
to include as a child of the Processor class. The
Processor class defines all the digital processing
hardware used by the software radio. Traditionally
processing hardware has consisted of DSPs, FPGAs and
, which are included in the SCA architecture hardware
class definition. In this paper, we introduce another
class of processing hardware for Configurable
Computing Machines (CCM), the CCM class. The
CCM class definition can be included as another
extension to the Processor class as shown in Figure 7.

 Processor

GPP DSP FPGA CCM

Processor

GPP DSP FPGA CCM

Figure 8.

Figure 7: Suggested Processor class definition

Each of a CCM’s processing cores can be
considered an executable device, thus the Device created
for the CCM should be an AggregateDevice which is an
aggregation of ExecutableDevices. It would be the
responsibility of the adapter to ensure that the
information intended for a specific device within the
CCM arrives at the device. By treating the CCM as an
aggregate device, partial reconfigurability is extended
further and more easily supported within the SCA. Each
vendor supplying a CCM would also be required to
provide a Device Configuration Profile for that CCM.
This profile should contain the type and number of
rocessing cores that are available on the CCM, the type
and number of I/O ports, the amount of available
memory, and whether or not the CCM is scaleable. For
applications that indicate operation on a CCM, those
applications should also indicate the amount of
resources that application consumes with respect to the
aggregated devices on the CCM. A device manager
would then be instantiated for the CCM according to the
DeviceManager class interface. This device manager
would specifically be responsible for monitoring the
capacity of the CCM and apprising the domain manager.
In the following section, we present an example of
inserting a CCM into a SCA compliant radio.

- <xs:element name="Device">
- <xs:complexType>

- <xs:sequence>
<xs:element name="numDataPorts" type="xs:int" />
<xs:element name="numUnits" type="xs:int" />
<xs:element name="numMultipliers" type="xs:int" />
<xs:element name="numMemUnits" type="xs:int" />

</xs:sequence>
<xs:attribute name="isScalable" type="xs:boolean" />

</xs:complexType>
</xs:element>

Figure 8 Partial Listing of Stallion Device Configuration
Profile

 A device manager class for Stallion should also

be created that inherits the Device interface. A class
diagram for this class is shown in

Figure 9. Notice that the Stallion Device Manager
contains the Stallion configuration as well as a list of
already registered services that are available. The
Stallion Device Manager is also responsible for

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

maintaining the current status of Stallion and available
capacity for use by the domain manager. The device
manager also responds to requests from the domain
manager to implement algorithms on Stallion through
the Stallion Adapter.

Stallion
Device
Manager

Dom ain ManagerStallion
Device

Stallion
Device
Adapter

configure

Application
request
hardware for
application

query device availability

Respond with available devices

allocate hardware
for application

Request device configuration

configure

update
log

confirm device configure

send
configuration
ack.

Stallion
Device
Manager

Dom ain ManagerStallion
Device

Stallion
Device
Adapter

configure

Application
request
hardware for
application

query device availability

Respond with available devices

allocate hardware
for application

Request device configuration

configure

update
log

confirm device configure

send
configuration
ack.

deviceConfigurationProfile: StallionConfigFileName
label: StalllionDeviceManager
identifier: string
registeredDevices: StallionSequence
registeredServices: StallionServicesSequence

StallionDeviceManager

registerDevice()
unregisterDevice()
shutdown()
configureStallion()

deviceConfigurationProfile: StallionConfigFileName
label: StalllionDeviceManager
identifier: string
registeredDevices: StallionSequence
registeredServices: StallionServicesSequence

StallionDeviceManager

registerDevice()
unregisterDevice()
shutdown()
configureStallion()

Figure 11: Stallion CCM configuration scenario

 Figure 9: Device Manager UML for Stallion Device

Manager

5 RECOMMENDATIONS AND
CONCLUSIONS

 Figure 10 and

CCMs provide an added dimension of flexibility by

enabling hardware paging and partial reconfiguration.
They represent an important class of processing
hardware and are poised to become a major component
of software radios. Their inclusion in the SCA is
necessary for exploiting the latest hardware
developments for software radios. In this paper we have
described methodologies for including CCMs in the
SCA with minimum modification to the existing
standard. The primary steps for including CCMs in the
SCA hardware are summarized as follows:

Figure 11: Stallion CCM configuration scenario

 depict the sequence of steps needed to initialize and
configure Stallion. Upon startup, the Stallion Device
Manager is responsible for initializing and registering
each of the Stallion devices in its profile. The Device
Manager interacts solely with the Stallion Adapter so
that the actual interactions with Stallion are transparent
to the remaining components in the SCA. Once the
Stallion Device Manager successfully launches a
Stallion Device and registers its services, the Device
Manager registers the CCMs with the Domain Manager.
The Domain Manager uses this information when an
application requests the use of a Stallion Device. The
Domain Manager queries the Stallion Device Managers
to obtain an updated list of available devices and
allocates devices to the application based on the CCM’s
capacity and registered services.

1. Define a new class called the CCM class as an
extension of the Processor class.

2. Define attributes in the device manager for the
CCMs used. Include these attributes in the CCM’s
Device Configuration Profile that is shared with
the domain manager.

3. Develop a CCM interface class that satisfies the
AggregateDevice interface.

4. Develop an Adapter for each CCM to be included. Stallion
Device
Manager

Dom ain
Manager

Stallion
Device

CF
Node
Boot up

1: create

XML
Parser

Stallion
Device
Adapter

2: parse
DCD and
SPD files

3: launch
device 4: launch

device

5: launch
result6: register device

(assumes successful
launching)

7: initialize
8: initialize

10: configure9: configure

11: register device in domain manager

Stallion
Device
Manager

Dom ain
Manager

Stallion
Device

CF
Node
Boot up

1: create

XML
Parser

Stallion
Device
Adapter

2: parse
DCD and
SPD files

3: launch
device 4: launch

device

5: launch
result6: register device

(assumes successful
launching)

7: initialize
8: initialize

10: configure9: configure

11: register device in domain manager

 Stallion, the CCM developed at Virginia Tech
is used as a candidate CCM to demonstrate the
integration of CCMs into the SCA. However, the steps
described here are applicable to other CCMs and can be
implemented along the same lines.

6 REFERENCES

[1] Software Communications Architecture Version 2.2.
[2] J. Mitola, Software Radio Architecture: Object-Oriented
Approaches to Wireless Systems Engineering, John Wiley,
2000. Figure 10: Stallion CCM startup scenario

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

[3]Object Management Group Document: formal/02-06-33:
“The Common Object Request Broker: Architecture and
Specification,” Version 3.0. www.omg.org
[4] S. Vinoski, “CORBA: Integrating Diverse Applications
within Distributed Heterogeneous Environments,” IEEE
Communications Magazine, Vol. 35 Issue: 2, Feb. 1997.
Page(s): 46 -55.
[5] Object Management Group Document formal/02-08-01:
“Minimum CORBA Specification” www.omg.org.

[6] J. Reed, Software Radio: A Modern Approach to Radio
Engineering. Prentice Hall, 2002.
[7] S. Srikanteswara, “Design and Implementation of a
Soft Radio Architecture for Reconfigurable Platforms,”
Ph.D. Dissertation 2000 Virginia Tech.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

http://www.omg.org/
http://www.omg.org/

