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ABSTRACT 
 
Until recently, FPGAs were rarely used for signal 
processing.  FPGAs were held back by factors such as 
limited capacity, design flows that were unfamiliar to DSP 
engineers, and a lack of DSP-related intellectual property 
libraries.  In the last few years, though, a growing number 
of FPGAs and related products targeting DSP applications 
have begun to address these shortcomings.  At the same 
time, the requirements of important emerging DSP 
applications like software-defined radios have begun to 
exceed the capabilities of traditional DSP processors, 
motivating system developers to consider alternatives. 
 
In this paper we examine the key requirements of 
communications infrastructure applications targeted by 
FPGAs.  We present a methodology for evaluating 
FPGAs for these applications using metrics such as 
capacity and cost/performance, and use this methodology 
to evaluate the latest DSP-enhanced FPGAs from Altera 
and Xilinx.  We also compare FPGAs and their associated 
DSP-oriented development tools to products offered by 
DSP processor vendors, and assess the features, strengths, 
and weaknesses of key products in both categories.  
Finally, we discuss key technology trends pertinent to 
FPGAs and DSPs. 
 

1. INTRODUCTION 
 
Implementing the digital signal processing (DSP) tasks in 
communications applications typically requires chips with 
very strong number-crunching capabilities.  At the same 
time, communications applications place stringent 
constraints on cost and power consumption.  DSP tasks in 
telecom products have historically been implemented 
using DSP processors (often referred to as “DSPs”) or 
application-specific integrated circuits (ASICs).  ASICs 
can achieve high levels of performance with hard-to-
match cost and energy efficiency, but they require 
massive design efforts.  DSPs, on the other hand, ease the 

development process, and provide adequate performance 
and reasonable efficiency for many applications.   

Throughout most of their history, field-programmable 
gate arrays (FPGAs) have rarely been used to implement 
DSP tasks, for a number of reasons.  Until fairly recently, 
FPGAs lacked the gate capacity to implement demanding 
DSP algorithms and did not have good tools support for 
implementing DSP tasks.  They have also been perceived 
as being expensive and power hungry.  All this may be 
changing, however, with the introduction of new DSP-
oriented products from FPGA vendors like Altera and 
Xilinx.   
 

2. DSP APPLICATION REQUIREMENTS 
 
To help in understanding when it is appropriate to use an 
FPGA for the DSP tasks in a communications 
infrastructure application, it is useful to understand the 
unique demands DSP applications place on an 
implementation technology.  (By “implementation 
technology,” we mean the type of device—e.g., 
microprocessor, FPGA, ASIC, etc.—that is used to 
implement the DSP functionality.) There are several 
common requirements that set DSP applications apart and 
make typical DSP applications particularly challenging to 
implement.  These requirements drive the choice of 
implementation technology, and include: 
 
Real-time processing requirements.  Most DSP 
applications process signals in real time, placing strict 
constraints on the time available to process each digital 
data sample.  In particular, communications infrastructure 
equipment must be capable of processing multiple 
independent channels simultaneously and in real time.  
Indeed, these requirements often exceed the performance 
capabilities of even the fastest DSP processors. 
 
Diverse computational requirements.  The sample rates 
(that is, the rate at which new samples arrive) in 
communications infrastructure applications can range up 
to the hundreds of MHz.  Thus, these applications are very 
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computationally intensive, performing repetitive 
arithmetic operations over vast amounts of data.  This is 
distinctly different from typical computer software, for 
example, which tends to rely more heavily on decision-
making (if-then-else) processing.  A basic operation used 
in many DSP algorithms is the multiply-and-accumulate 
(MAC) operation.  Hence, it is highly desirable for many 
DSP applications to be able to execute many MACs per 
second and this metric is sometimes used as a proxy for 
the DSP performance of a device.  DSP applications also 
often make heavy use of bit-manipulation operations, 
memory accesses, and various arithmetic operations. 
 
Numeric fidelity.  Different DSP applications require 
varying levels of numeric fidelity.  For example, signal 
fidelity in an OFDM (orthogonal frequency division 
multiplexing) receiver will be limited by communication 
channel noise and analog to digital converters; the 
receiver implementation may therefore tolerate relatively 
low numeric fidelity.  Numeric fidelity in a DSP algorithm 
implementation is affected by the precision and dynamic 
range of the data, which are in turn a function of the 
format of the data word (its length in bits and whether it is 
a fixed-point or floating-point format).  16-bit data word 
widths (and occasionally 24 or 32 bits) are commonly 
used in communications applications implemented using 
DSPs.   
 
High memory bandwidth.  DSP applications process vast 
amounts of data at a high rate.  The ability to bring large 
amounts of streaming data on and off the chip, and keep 
on-chip computational resources fed with data, is essential 
to meeting computational demands and real-time 
constraints.   
 
Low cost.  Hardware cost is a key consideration in most 
applications.    However, other costs may become the 
overriding concern in a communications infrastructure 
application.  For example, in low-volume applications, 
development costs can be more important than bill of 
materials costs.  When evaluating chip costs in 
communications infrastructure applications, cost per 
channel can be more important than simple chip cost. 
 
Low energy consumption.  Communications infrastructure 
equipment may be sensitive to energy consumption due to 
heat dissipation and power supply design considerations.  
Like cost, energy efficiency is often evaluated on a per-
channel basis rather than per chip in these applications. 
 
Reprogrammability.  New and emerging communications 
applications often are based on evolving standards and 
other changing requirements, and equipment developers 
may have little advance knowledge about how their 

product may need to adapt to new standards and changing 
requirements in the future.  This lack of predictability is at 
odds with time-to-market pressures; developers often 
must design a product before the standards and 
requirements are fully fixed.  These conflicting objectives 
motivate use of a technology that allows field upgrades so 
that unanticipated future demands can be met after 
product delivery.  In addition to the challenge of adapting 
to evolving standards, the high complexity of many 
communications infrastructure systems (such as third-
generation cellular base stations) makes it nearly 
impossible to identify all of the bugs and implement all of 
the desired functionality before the product reaches the 
market.  Use of a reprogrammable technology allows the 
developer to fix bugs in the field and add features after the 
product has been released. 
 
The relative importance of each of the above requirements 
varies depending upon the specifics of the application.  
Thus, the designer must weigh each of these (and possibly 
other) requirements carefully before choosing an 
implementation technology. 
 

3. FPGA TECHNOLOGY OVERVIEW 
 
An FPGA is a chip composed of an array of configurable 
logic blocks (also called logic cells), programmable 
interconnect resources, I/O blocks, and sometimes 
embedded specialized fixed-function blocks.  The basic 
structure of an FPGA device is shown in Figure 1.  Each 
logic block can be configured, or programmed, to perform 
one of a variety of simple functions, such as computing 
the logical AND of two inputs.  Configuration 
information that is read by the device when it is powered 

up specifies the configurations of each of the logic blocks 
and the connections between them, and thus specifies the 
functionality that is implemented by the FPGA.  Hence, 

 Interconnect 
Logic block 
I/O block 

Figure 1.  Simplified FPGA structure. 
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the FPGA’s logic blocks can be used as building blocks to 
implement any kind of functionality desired, from low-
complexity state machines to complete microprocessors.  
However, FPGAs are limited; the clock speed at which an 
FPGA executes is determined in part by the functionality 
it is implementing (that is, by its configuration), and each 
FPGA provides a finite set of logic blocks and 
interconnect resources. 

A key advantage of FPGAs is their flexibility; an 
FPGA can be configured to match the requirements of an 
application.  This advantage does not mean that FPGAs 
are appropriate for every application, however.  This is 
because, in general, there is a tradeoff between a device’s 
flexibility and its efficiency.  FPGAs are extremely 
flexible, but because they are reconfigurable and not 
optimized for a specific task, they are typically not as 
efficient (in terms of speed, cost, power consumption, 
and/or die size) as devices that are based on fixed-
function hardware, such as ASICs.  In this respect, the 
FPGA is a jack of all trades, but master of none.  Another 
tradeoff exists between device performance and 
application development effort.  While FPGAs can 
achieve much higher performance than programmable 
DSPs or general-purpose processors (GPPs), developing 
DSP applications for FPGAs is generally far more 
challenging. 
 

4. FPGAS FOR DSP 
 
FPGAs were not originally designed with the needs of 
DSP applications in mind, but a number of significant 
advances in FPGA technology have improved the 
suitability of FPGAs for DSP.  These advances include: 
 
Increased Capacity.  In the past, FPGAs simply did not 
have the capacity (in terms of the number of logic cells) 
needed to implement challenging DSP algorithms.  This 
was a fundamental limitation that prevented their use in 
DSP applications for which they would otherwise be well 
suited.  Today’s FPGAs, however, have capacity far in 
excess of that available in FPGAs of even a few years ago 
and are now able to accommodate complex DSP 
functionality.  For some applications, increased capacity 
also yields increased application performance. 
 
Increased Speed.  Historically, FPGAs were not able to 
execute DSP tasks fast enough to meet the real-time 
constraints of many DSP applications.  One reason for this 
is that FPGA chips did not operate at particularly high 
clock frequencies (for example, relative to 
microprocessors).  Recent improvements in the process 
technologies used to fabricate FPGAs have increased their 
operating frequencies, helping to boost their performance.  
Clock speed is only one factor in application performance, 

however.  Equally important is the amount of work the 
chip can execute in each clock cycle.  FPGAs have 
inherently highly parallel architectures; that is, they can 
execute many operations in parallel.  Thus, in applications 
that can benefit from parallel processing (such as multi-
channel applications), the new high-capacity FPGAs 
(even without DSP-oriented enhancements) can perform 
much more work per clock cycle than most processors.   
 
Increased memory bandwidth.  Older FPGAs did not have 
sufficient memory bandwidth to meet the needs of 
demanding DSP applications.  Recent FPGAs address this 
problem by including numerous hardwired memory 
blocks (embedded within the logic array).  The new high-
capacity FPGAs have far higher memory bandwidth than 
DSP processors.  This is an important advantage, because 
many DSP applications are heavily data-intensive. 
 
Better DSP-oriented tools.  Until recently, FPGA 
development tools provided little specialized support for 
development of DSP applications.  For example, the tools 
did not explicitly support implementation of common 
DSP algorithms, such as filters.  In addition, the tools 
were not integrated with other tools commonly used to 
develop DSP algorithms, such as MATLAB.  As a result, 
an engineer who needed to implement a DSP algorithm 
with an FPGA would typically first design and simulate 
the algorithm using software such as MATLAB, then 
manually create an HDL (hardware description language) 
description of the algorithm for implementation with an 
FPGA—a time-consuming, error-prone process.  Recent 
improvements in FPGA tools have significantly improved 
their usability for DSP applications.   
 
Increasing availability of IP libraries.  Intellectual 
property (IP) modules can significantly accelerate design 
cycles by offering carefully designed and tested functional 
blocks.  Until recently, there were few DSP-oriented IP 
modules available for FPGAs, forcing engineers to 
develop nearly every function from scratch.  This process 
was particularly painful because of the lack of DSP-
oriented development tools.  In comparison, the supply of 
optimized algorithm implementations for DSP processors 
from DSP manufacturers and from third-party developers 
has been much richer.  This is another area in which 
FPGAs have recently made significant strides, with both 
of the major FPGA vendors (Altera and Xilinx) now 
offering libraries of DSP-oriented IP modules. 
 
Architectural enhancements for DSP.  Altera’s recently 
announced Stratix FPGA family and Xilinx’s Virtex-II 
family both offer significant DSP-oriented architectural 
enhancements.  For example, both products offer hard-
wired on-chip multipliers (embedded throughout the 
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reconfigurable logic array) intended to accelerate the 
multiply-accumulate (MAC) and similar operations 
common in DSP algorithms.  By including some 
hardwired processing elements, FPGAs can improve their 
energy efficiency and cost/performance while offering 
outstanding DSP performance.   
 

5. EVALUATING FPGA PERFORMANCE 
 
The computational requirements of today’s 
communications applications often exceed the 
performance available from even the fastest DSP 
processors.  This makes the new breed of DSP-enhanced 
FPGAs a potentially attractive solution for certain 
applications.  A key challenge for system designers, 
though, is understanding where it is appropriate to use 
these new devices.  Unfortunately, designers have been 
stymied by the lack of a reliable way to evaluate the DSP 
performance of FPGAs or to compare their performance 
to that of DSP processors.  Clearly, there is a need for 
DSP-oriented benchmarks that will enable engineers to 
make these comparisons. 
 
5.1.  FPGA Benchmarking Methodology 
 
Good benchmarking requires careful selection of 
benchmarks and a well-developed methodology.  BDTI’s 
well-established benchmarking of processors for DSP 
applications uses a suite of common DSP algorithms, such 
as finite impulse response (FIR) filters, optimized in 
assembly language on each processor.  A processor’s 
results on each benchmark can be thought of as “basis 
vectors” that can be combined to estimate performance in 
an application.   
 
Although the computation requirements of a typical DSP 
application are dominated by a handful of algorithms, 
individual algorithm kernels are not suitable as 
benchmarks for high-capacity FPGAs, for several reasons 
[1].  With a DSP processor, application developers 
aggressively optimize each of the key performance-
hungry algorithms for speed.  When a particular algorithm 

is running, it has exclusive use of all of the processor’s 
execution units.  With an FPGA, in contrast, designers 
have the flexibility to trade off parallelism (and hence 
performance) against resource (logic blocks, multipliers, 
etc.) utilization.  Thus, unlike on a DSP, it makes little 
sense for a single algorithm to consume all of an FPGA’s 
resources because no resources would remain for the rest 
of the application.  Instead, the designer must optimize the 
application as a whole, allocating the available hardware 
among each of the constituent algorithms.  These 
observations lead us to conclude that a benchmark for 
FPGAs must look more like a complete application and 
less like a single algorithm kernel.   
 
5.2.  Performance Metrics 
 
Although they are powerful, the latest DSP-enhanced 
FGPAs are also expensive.  The least expensive DSP-
enhanced FPGAs such as those in the Xilinx’s Virtex-II 
[2] and Altera’s Stratix [3] families are priced in the 
hundreds of dollars, and the most expensive family 
members cost thousands of dollars per chip.  Such prices 
render these chips unsuitable for highly cost-constrained 
products like cable TV set-top boxes or DSL modems.  
But in communications infrastructure equipment, a chip is 
not automatically disqualified due to high cost—
especially if a single chip can handle the processing for 
many communications channels.  Thus, benchmark results 
should be reported in terms of the number of channels that 
can be supported on a single chip and the associated cost 
per channel (based on the chip cost).  These results can be 
used to compare an FPGA’s performance to that of DSPs. 
 
5.3.  Benchmark Development 
 
BDTI recently developed a new communications-oriented 
benchmark.  Rather than using a single algorithm as a 
benchmark, The BDTI Communications BenchmarkTM 
models a single-channel OFDM receiver, as shown in 
Figure 2.  OFDM is a complex technique that is finding 
increasing use in a variety of high-speed data 
communications applications.  Thus, this benchmark is 

IQ FIR
Filter FFT Slicer ViterbiIQ FIR
Filter FFT Slicer Viterbi

Figure 2.  BDTI’s Communications BenchmarkTM. 
 

The benchmark is a simplified single-channel receiver, shown  in the block diagram above.  The IQ block 
performs demodulation into in-phase (I) and quadrature (Q) signals; the Slicer block maps fast Fourier transform 
(FFT) outputs to points in a QAM (quadrature amplitude modulation) constellation. [4] 
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designed to be representative of the kinds of processing 
found in communications equipment for applications such 
as DSL, cable modems, and fixed wireless systems.  The 
benchmark includes blocks for demodulation, filtering, 
time-frequency domain transformation, and channel 
decoding.  Input and output data formats and sample rates, 
along with other implementation details, are specified as 
part of the benchmark definition.  Benchmark 
implementers are tasked with implementing as many 
channels of the receiver as they can fit onto a single chip. 
 

6. RESULTS AND CONCLUSION 
 
BDTI invited Altera and Xilinx to implement the BDTI 
Communications Benchmark on their DSP-enhanced 
FPGAs.  BDTI also invited Motorola and Texas 
Instruments to implement the benchmarks on their high-
end DSPs, which target communications infrastructure 
equipment.  Altera and Motorola took up our challenge, 
and each delivered a highly optimized implementation of 
the benchmark. 

The FPGAs excelled in this benchmark.  A typical 
member of Altera’s Stratix family of FPGAs is projected 
to handle dozens of communications benchmark channels.  
In contrast, a high-end DSP could not support even a 
single a single channel [5].  With DSPs falling short of the 
needs of today’s most demanding applications, such 
performance levels can make FPGAs an attractive 
solution.  

While some high-capacity FPGAs carry staggering, 
multi-thousand-dollar price tags, both Altera and Xilinx 
offer DSP-enhanced FPGAs with prices in the low 
hundreds of dollars, which puts them in the same price 
range as many high-end DSPs.  A huge performance 
advantage combined with comparable prices leads to a 
huge advantage in terms of cost/performance for DSP-
enhanced FPGAs in many applications. 

Our initial benchmarking work suggests that the new 
DSP-enhanced FPGAs can indeed achieve impressive 
performance in certain types of DSP applications.  But our 
experience with these new devices, and discussions with 
users, indicate that factors other than performance are 
often decisive in decisions regarding use of an FPGA.  
For example, one key challenge facing DSP applications 
developers using FPGAs is the relative complexity of the 
design process and lack of DSP-specific features in the 
development tools, compared to what is available for the 
best-supported DSPs. 

Clearly, as with most technology-selection choices, 
the decision of whether to use an FPGA for a DSP 
application requires a sophisticated, multidimensional 
evaluation—one that depends on a large number of 
specifics of the target application.  Thus, although 
benchmark results are important, there are many “soft” 

considerations that are of equal importance when 
choosing between an FPGA and a DSP processor. 

One of these considerations is the availability of 
relevant staff expertise.  For example, most DSP 
application developers are not familiar with the design 
flow for FPGAs.  Implementing even a simple FIR filter 
on an FPGA requires a totally different design process 
(and mind-set) than implementing the same function on a 
DSP processor.  Altera and Xilinx offer tools and libraries 
to help simplify the process, but there will be a formidable 
learning curve for engineers who are primarily 
accustomed to working with processors.  In addition, the 
time required to develop an optimized implementation of 
even a relatively modest DSP function for an FPGA can 
be dramatically longer than that required to write an 
optimized version for a DSP.  For example, one source 
told BDTI that it can take six man-months to develop an 
optimal Fast Fourier Transform (FFT) implementation for 
an FPGA, compared to our own experience of 
approximately one week of development for a high-end 
DSP.  Altera’s and Xilinx’s libraries of functions help 
address this issue—but often, the function that is needed 
is not exactly what is in the library, or is not in the library 
at all.   
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