

Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio – Brussels – 22-24 June 2011

Overview of learning and decision making techniques for cognitive radio equipment

Wassim JOUINI, Christophe MOY, Jacques PALICOT

Supélec, Rennes Campus Team SCEE/IETR CNRS-6164

christophe.moy@supelec.fr

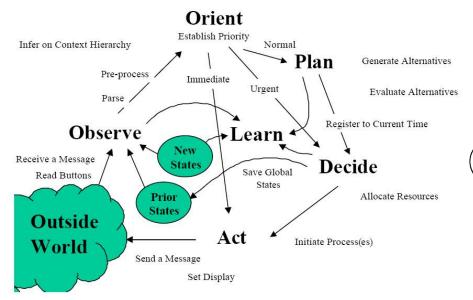
Lab

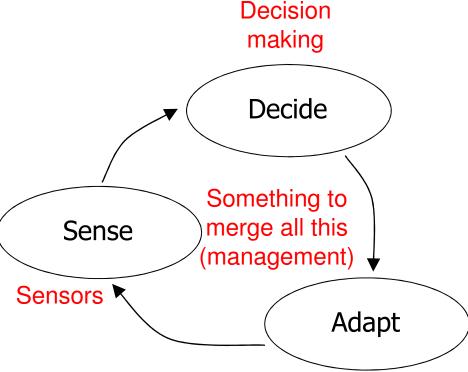
- Christophe MOY
- Professor in SUPELEC, Rennes campus
- SUPELEC is a French engineering school
- SCEE research team Jacques PALICOT
 - 7 professors, 12 Ph.D. students
 - Research topics: SDR and CR
 - -3 axes
 - Signal processing and decision making
 - Hardware architectures and design methodologies
 - Sensing for cognitive radio

Presentation outline

- Cognitive Radio introduction
- Decision making for CR
- HDCRAM
- CR equipments high-level design
- Conclusion

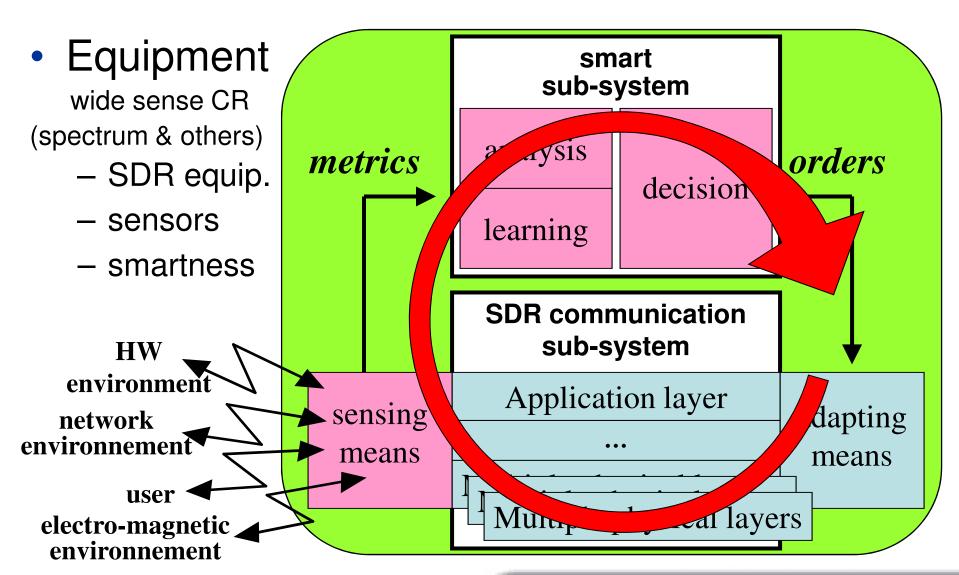
Presentation outline


- Cognitive Radio introduction
- Decision making for CR
- HDCRAM
- CR equipments high-level design
- Conclusion



Simplified cognitive cycle

Joe MITOLA's cycle


- not only spectrum oriented
- any captured information is worth
- at any layer (not only PHY layer)

SDR and Reconfiguration management

Cognitive radio equipment level

Presentation outline

- Cognitive Radio introduction
- Decision making for CR
- HDCRAM
- CR equipments high-level design
- Conclusion

CR context

Optimisation for CR:

- multi-critria issue
- many parameters to be taken into account
- possible high uncertainty on environnement
- approximative solution may be worth
- State-of-the-art (on configuration adaptation)
 - genetic algorithms
 - SVM classification (Support Vector Machine)
 - fuzzy logic, neural networks, expert system

Other solutions?

- If system behavior can be modeled by successive states and mutliple choices
 - Markov chains (Markov Decision Process MDP)
 - finite state machines
- Decision trees
- Multi-criteria resolution
 - agregation of criteria in one or Pareto equilibrium (set of non comparables solutions)
- → Need to combine methods in CR context
- → Also imply <u>learning</u> to alleviate uncertainty

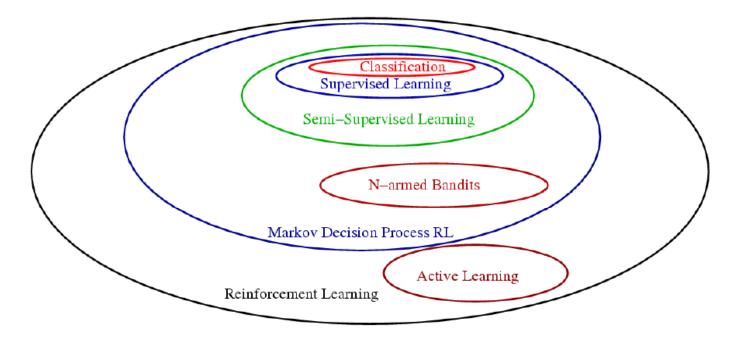
Learning techniques

Principle

- Trials on the environment
- Infere decision making rules

Examples

- Artificial Neural Networks (ANN)
- Statistical learning
- Evolving connectionist systems (ECS) (example of evolving neural networks)
- Regression models
- reinforcement learning (RL)



Possible hierarchy of learning methods

From reinforcement learning community

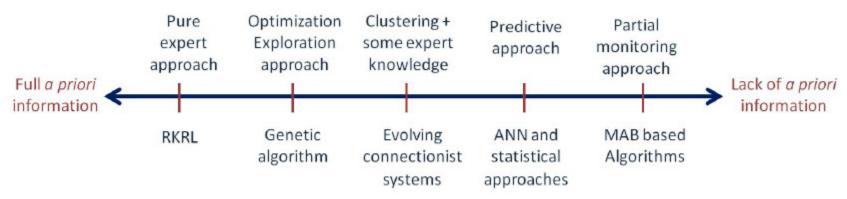
- © John Langford, Yahoo
- Anyway, decision making for CR is hard to describe/classify
 hard to choose for CR

Towards a classification of decision making for CR

- Dimensioning the decision making engine is submitted to 3 constraints in CR context
 - constraints imposed by the environment
 - allocated frequency bands, tolerated interference, etc.
 - constraints related to the user's expectations
 - service: voice, video-conferencing, data, streaming, etc.
 - maximizing QoS, minimizing energy consumption, minimizing cost, maximizing spectral efficiency, etc.
 - the constraints inherent to the equipment
 - depending on the level of flexibility, the abaility to adapt
 - modulation, pulse shaping, symbol rate, transmit power, etc.
- Depending on the "a priori knowledge" on these 3 constraints (information & limitation)

Example on constraint #1

- Constraints of the surrounding environment
 - communication rules to respect
 - allocated frequency bands, tolerated interference, max power to transmit, radio standard, etc.
- If no degree of freedom for the equipment
 - no possible cognitive behavior
 - obey the rigid rules (current status)
- If no constraint imposed by the environment
 - a CR equipment is still limited in function of its abilities and user expectations



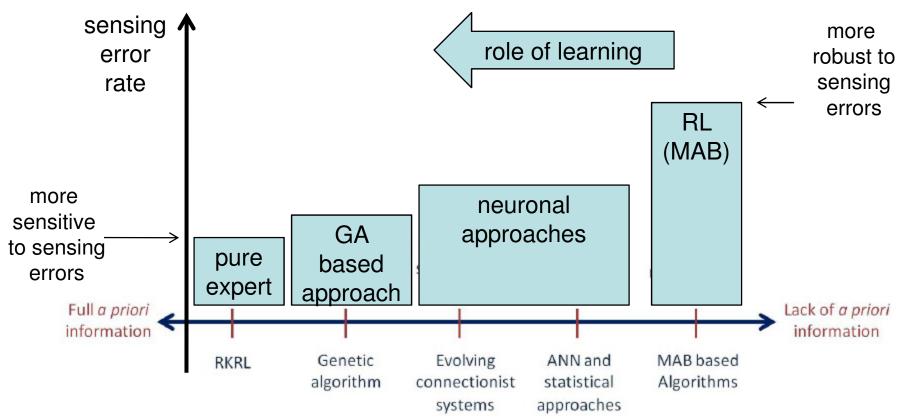
Decision making - classification

 Depending on the degree of a priori knowledge, different decision making solutions may be worth using in each case

[1] Wassim JOUINI, Christophe MOY, Jacques PALICOT, "On decision making for dynamic configuration adaptation problem in cognitive radio equipments: a multi-armed bandit based approach," 6th Karlsruhe Workshop on Software Radios, WSR'10, Karlsruhe, Germany, March 2010

Decision making inside a CR equipment

- Left side (high a priori) decision approaches have been addressed a lot in the litterature
 - also in the CR field
- [2] C.J. Rieser, "Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and Networking", PhD thesis, Virginia Tech, 2004
 - [3] N. Colson, A. Kountouris, A. Wautier, L. Husson, "Cognitive decision making process supervising the radio dynamic reconfiguration", CronwCom 2008
- [4] N. Baldo, M. Zorzi, "Fuzzy logic for cross-layer optimization in cognitive radio networks", Consumer Communications and Networking Conference, January 2007
- [5] C. Clancy, J. Hecker, E. Stuntebeck, "Applications of machine learning to cognitive radio networks", IEEE Wireless Communications Magazine, vol 14, 2007
 - [6] T. Weingart, D. Sicker, and D. Grunwald, "A statistical method for reconfiguration of cognitive radios", IEEE Wireless Commun. Mag.,vol. 14, no. 4, pp. 3440, August 2007
- [7] T. W. Rondeau, D. Maldonado, D. Scaperoth, C.W. Bostian, "Cognitive radio formulation and implementation", IEEE Proceedings CROWNCOM, Mykonos, Greece, 2006



Decision making and sensing uncertainty

Taking into account sensing imperfections

[8] Wassim JOUINI, Christophe MOY, Jacques PALICOT, "A decade of reasearch on decision making for cognitive radio," submitted to Journal on Wireless Communications and Networking

Decision making and CR

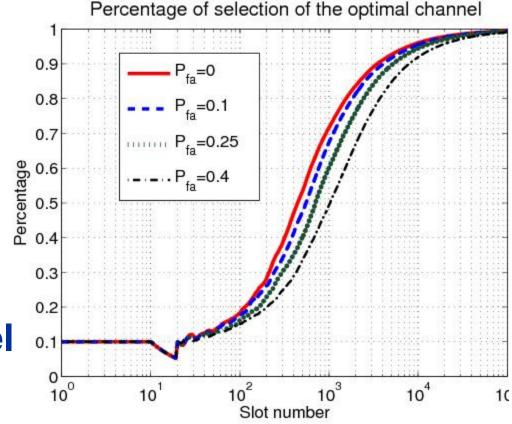
- Often if not always mix techniques
- But we may expect that most of the time a CR equipment will have to make decisions
 - on a high number of criteria
 - with a lot of unknwown, uncertainty
- Hardest case: a minimum of knowledge
- Example of dynamic configuration adaptation (DCA) and opportunistic spectrum access (OSA)
- a lot of unknown information

Decision making for dynamic configuration adaptation (DCA)

- Future scenario of full-free real-time link adaptation (just impact at PHY layer studied here)
- Depending on
 - the environment: propagation, network load, etc.
 - the equipment capabilities in terms of flexibility: constellation, channel coding, interleaving, etc.
 - the user: communication nature, required QoS, contract, location, speed, etc.
- What is the best configuration?
- At every instants?

Decision making for opportunistic spectrum access (OSA)

- A secondary user (SU) may access the spectrum dedicated to a primary user (PU)
- Depending on
 - the environment: bands availability, BW, etc.
 - the equipment capabilities in terms of flexibility: carrier frequency, filtering, constellation, etc.
 - the user: communication service, required QoS, location, etc.
- What is the best channel choice?
- At every instants?



Multi-armed bandit (MAB) UCB (Upper Confidence Bound)

- OSA of 10 channels with different probabilities of occupation by primary users
- no a priori knowledge
- goal: a SU learns and converges on most available channel
- Percentage of time the UCB selects the optimal channel (under various sensing errors probabilities: P_{fa})

[9] Wassim JOUINI, Christophe MOY, Jacques PALICOT, "Upper Confidence Bound Algorithm for Opportunistic Spectrum Access with Sensing Errors", CrownCom'11, 1-3 June 2011, Osaka, Japan

Terminal-centric or network-centric?

equipment

Network-centric

- concentrate smartness in the network
- more processing power available (plug)
- more complex computations
 Need of
- Terminal-centric
 - distribute decision making
 management
 - make decision where information is for CR
 - less sensing data to transfert through the air
- → Anyway, CR equipments in both cases
- → Certainly coexistence of both indeed

Presentation outline

- Cognitive Radio introduction
- Decision making for CR
- HDCRAM
- CR equipments high-level design
- Conclusion

What is a CR equipment made of?

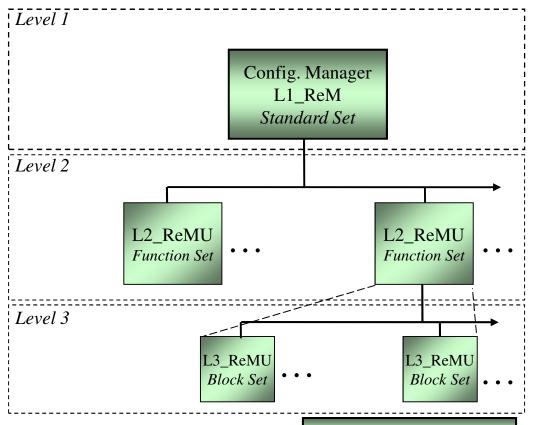
- A CR equipment is no more only
 - radio signal processing
- In addition
 - specific signal processing for sensing
 - specific signal processing for decision making
 - some management / a SW architecture
- Heterogeneous hardware architecture
 - multi-processing
 - different nature: DSPs, FPGAs, ASICs

HDCRAM, what for?

- How to aggregate/integrate all 3 elements of cognitive cycle into a CR equipment?
 - configuration management
 - sensing
 - decision making
- We propose HDCRAM Hierarchical and Distributed Cognitive Radio Architecture Management
- A skeleton (rules) to make all 3 work together

[10] Christophe MOY, "High-Level Design Approach for the Specification of Cognitive Radio Equipments Management APIs", Journal of Network and System Management - Special Issue on Management Functionalities for Cognitive Wireless Networks and Systems, vol. 18, number 1, pp. 64-96, Mar. 2010

Reconfiguration management: HDReM



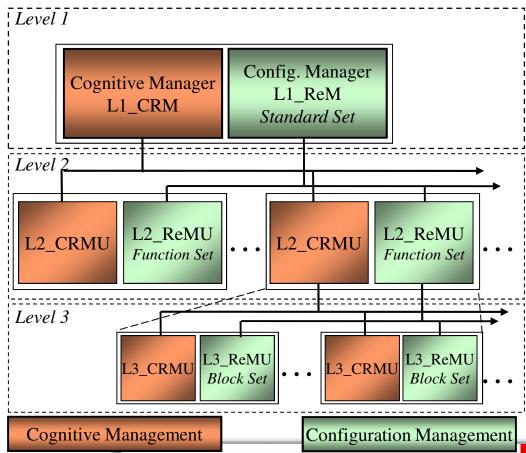
From a configuration management

- one L1_ReM
- severalL2_ReMUs
- each having severalL3_ReMUs

[11] Jean-Philippe DELAHAYE, "Plate-forme hétérogène reconfigurable : application à la radio logicielle", Ph.D. thesis, 2007

HDReM: Hierarchical and Distributed Reconfiguration Management

Configuration Management



Cognitive Radio management: HDCRAM

- To a CR management
- HDCRAM : Hierarchical and Distributed Cognitive Radio Architecture Management
- one L1 CR
- severalL2 CRUs
- each having severalL3_CRUs

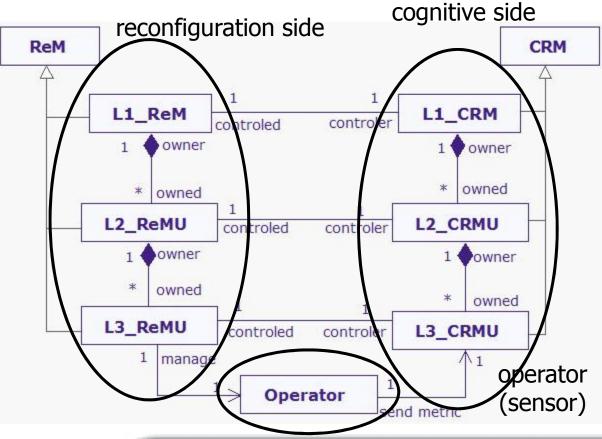
[12] Loïg GODARD, Christophe MOY, Jacques PALICOT, "From a Configuration Management to a Cognitive Radio Management of SDR Systems", *CrownCom'06*, 8-10 June 2006, Mykonos, Greece

HDCRAM metamodel

Formalisation of HDCRAM

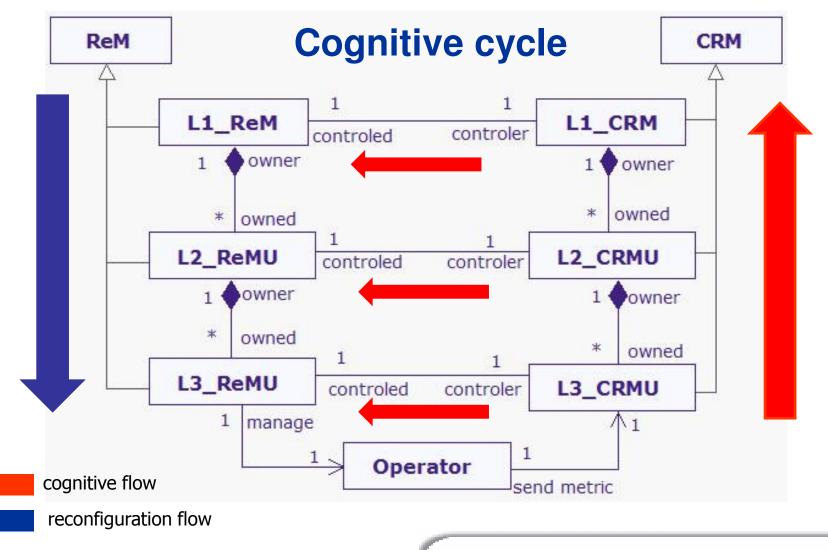
- lists all classes / metrics / concepts
- standardized syntax and view (UML)
- May be re-used by anybody
 - evaluation / comparison
 - to complete it (if necessary)
- A CR Metamodel
 - rules to be followed to build a CR equipment
 - some kind of language (DSL: Domain Specific Language)

[13] Loïg GODARD, Christophe MOY, Jacques PALICOT, "An Executable Meta-Model of a Hierarchical and Distributed Architecture Management for the Design of Cognitive Radio Equipments", Annals of Telecommunications, Special issue on Cognitive Radio, vol. 64, pp.463-482, number 7-8, Aug. 2009


HDCRAM metamodel

HDCRAM metamodel

represented in a standarded manner (UML)


- factorized viev of HDCRAM
- has to be instanciated for each CR equipment design scenar

Information transfers through HDCRAM

Presentation outline

- Cognitive Radio introduction
- Decision making for CR
- HDCRAM
- CR equipments high-level design
- Conclusion

CR equipment design paradigm

- CR equipment design is complex
- Need to mix
 - signal processing (radio, sensors, application, etc.)
 - management (SW)
 - heterogeneous programing (HW/SW co-design)
 - many possible scenari
- → Requires new design approaches
- → High level design

High-level design

- A wide variety of topics to be addressed during design, by various experts
- Need
 - abstraction
 - exploration facilities before code generation
 - interdisciplinary understanding
 - optimization weekness compensated by productivity gains
- thanks to high-level design approach

[14] Stéphane LECOMTE, Samuel GUILLOUARD, Christophe MOY, Pierre LERAY, Philippe SOULARD, "A co-design methodology based on Model Driven Architecture for Real Time Embedded systems", Mathematical and Computer Modelling Journal, Vol. 53, Issues 3-4, pp. 471-484, Feb. 2011

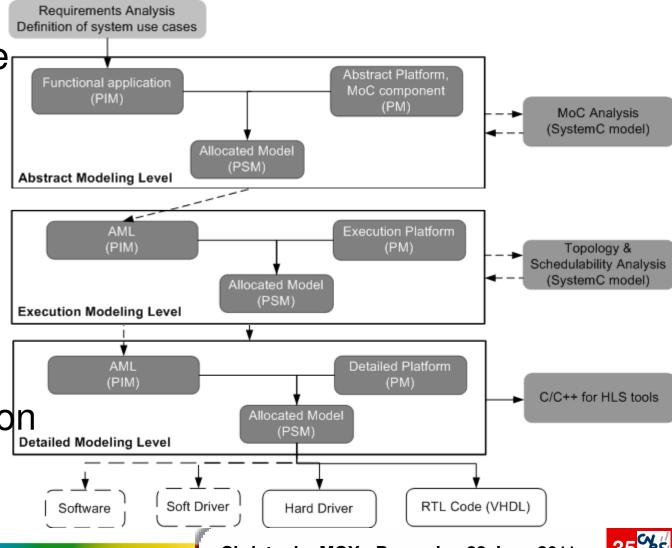
HDCRAM design reference for CR management

- HDCRAM simulator may be used at a very first stage of the design
 - CR-oriented design thx to HDCRAM metamodel
 - simulation of design scenari
 - only functional (currently not timed for instance)
- Industrial perspective: a design methodology based on a UML approach
- Compatibility between all CR equipments designed with the same rules

In a wider design perspective: MOPCOM design flow example

- Example of a 3 layers design approach: MOPCOM (from a collaborative research project)
- MDA modeling (Model Driven Architecture)
 - PIM Platform Independent Model
 - PSM Platform Specific Model
 - all UML features
 - standardized views and graphs
 - documentation
 - code generation
- → let's see how derive it for CR design

MOPCOM design flow



From

high leve specif.

Not specifically thought for CR, but for future embedded systems design

to code generation

Advantages for industrial development

- Same environment from high level specification to implemented code for heterogeneous targets (DSPs, FPGAs)
- Common UML representation for a common understanding all over design process
 - management
 - SW engineers
 - HW engineers
 - system engineers, integrators

Presentation outline

- Cognitive Radio introduction
- Decision making for CR
- HDCRAM
- CR equipments high-level design
- Conclusion

Conclusion

- Decision making for cognitive radio
 - the choice of decision method depends on a priori knowledge on the environment
- Management architecture (HDCRAM)
- Introduction to high level modeling for CR
 - a trend for complex HW/SW systems
 - including CR specificities (cognitive cycle)
 - metamodel / high-level design flow

