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ABSTRACT 
 
Polyphase channelization is essential for a variety of 
applications involving bandwidth reduction and signal 
separation. Implementations of polyphase channelizers 
based on a general purpose processor (GPP) or field-
programmable gate array (FPGA) platform have been 
investigated in the past. A novel approach to 
implementing a polyphase channelizer based on a 
graphics processing unit (GPU) is presented. Current 
GPUs have been shown to provide up to 500 GFlops for 
problems that do not have stringent size, weight and 
power (SWaP) requirements and are well suited for a 
parallel processing architecture. This paper compares the 
implementation of a polyphase channelizer based on a 
NVIDIA® 8800 GTX Graphics Card (NVIDIA 
Corporation) with one based on a central processing unit 
(CPU). The practical issues of implementation are 
presented and the performance measurements are 
discussed. 

    
1. INTRODUCTION 

 
Software defined radios (SDRs) have evolved over the 
years with more firmware radio-based approaches to 
accommodate stringent requirements of size, weight and 
power (SwaP). In recent years, research efforts have led 
to more software radio server-based architectures that 
leverage general purpose processors (GPPs) such as the 
currently deployed Anywave® Base Station product from 
Vanu Inc.. This paper extends the software radio-based 
architecture approach by exploring the use of graphics 
processing units (GPUs) with GPPs in a SDR framework. 
Rather than discussing general applications of the GPU to 
different elements of a software defined radio (SDR), we 
focus on a polyphase implementation of channelization. 
The motivation for this research is driven by the desire to 
leverage the highly parallel architecture of the GPU 
against the computationally intensive function of 
channelization. GPUs provide additional computational 
resources that, if implemented properly, could enable 
software-based radio systems to simultaneously process 

numerous bandwidth-intensive communication signals in 
real time, a requirement of cognitive radio networks.  

 
2. POLYPHASE CHANNELIZATION 

 
A common approach to performing channelization and 
resampling is by utilizing a polyphase filterbank 
implementation (see [2], [3]). For a filterbank of Q 
equally-spaced channels, each at a rate of P/Q times the 
input sample rate and using a finite impulse response 
(FIR) filter of length KQ, a polyphase implementation is 
more efficient by a factor of : 
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over a simple tune-upsample-filter-downsample approach. 
(for cases where Q > P, K > P, and where filtering is done 
using fast Fourier transform [FFT] processing). 

     The polyphase formulation of channelization also 
lends itself well to a parallel processing implementation 
as shown in Figure 1. The core processing stages of a 
polyphase filterbank can be preformed as large blocks of 
parallel FFTs, allowing the use of highly-optimized 
software libraries. 
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Figure 1. Parallel Processing Chain for Q-channel 
Channelization at Oversampled Rate P 
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2.1 GPU Processing 
For all of our GPU development in this paper, we utilized 
a NVIDIA Corporation’s NVIDIA® 8800 GTX (see [5] 
for specifications) running under 32-bit Red Hat, Inc.’s 
Red Hat® Enterprise Linux 4.  We used the NVIDIA 
CUDA™ toolkit [6] and the CUFFT 1.1 library [7] to 
create our GPU channelizer implementation. 

     We wrote custom GPU kernel code using CUDA to 
perform our data conversions (integer/signed/endian) and 
to perform parallel data rearranging and multiplexing 
between the FFT stages. We also wrote a kernel for 
performing a tailored parallel binary reduction operation 
for the resampler application. 

2.2 CPU Processing 
For comparison, we created reference implementations of 
the channelizer using code targeted to an x86 CPU. We 
implemented these libraries in C/C++ using the Free 
Software Foundation’s GNU® Compiler Collection 
(GCC) 3.4.5 under 32-bit Red Hat Enterprise Linux 4 
(kernel 2.6.9-34) running on a Dell Precision® 690 
workstation (Dell Computer Corporation) with two dual-
core Intel Corporation’s Intel Xeon® 2.33 GHz 
processors (5140 Woodcrest, 4MB L2 cache), and 2GB 
of system memory.  

     We used single-precision, SSE-enabled, multithreaded 
FFTW (version 3.1.2) libraries built from source to 
perform our CPU FFT computations. Whenever 
appropriate, we used parallel FFTW plans to maximize 
our CPU FFT performance. We configured FFTW to use 
four threads for generating its FFT plans in order to match 
the number of cores on our system. 

3. TESTING GPU KERNAL 
  

As our baseline test case, we used a 16-bit, signed 
complex data file stored on disk, containing 228 samples 
(1GB file size). We ran a range of channelization tests, 
with the number of channels processed ranging from 2 to 
1024 channels. 

     Because our processing is heavily input/output (I/O) 
bound by the file writing process, our timing results 
presented here represent no writing of the resulting data 
to disk, thereby highlighting the relative performance 
advantage of the GPU. These numbers do, however, 
include reading data from the file and transferring data to 
and from the GPU device. 

 

 

 

 

 

Figure 2. Channelization Time for 1GB 16-bit 
Complex Signed Data File, Filter Length = (number 
channels * 63) 

From Figure 2, we can see that the GPU implementation 
was typically on the order of 4-10 times faster than the 
associated CPU polyphase implementation across a wide 
range of channelization levels. 

     Figure 3 shows timing results for a range of 
decimation rates for the polyphase resampler. In this 
example, the resample ratio was simple decimation by a 
factor of 1/N. These results show that the GPU processing 
advantage over the CPU grows as the decimation rate 
increases, with a 10x advantage for a decimation rate of 
1024. Even for lower decimation rates, however, the GPU 
outperforms the CPU by at least a factor of two.  

  
Figure 3. Resample Time for 1GB 16-bit Complex, 
Signed Data File, Filter Length = (decimation rate * 
63) 
 

4. DEVELOPING A GPU-BASED SDR  
 
After successfully implementing and testing the GPU 
channelization kernel on a Dell Precision 690 
workstation, we wanted to test the kernel code on a SDR 
platform.  To satisfy this requirement, we developed a 
GPU-based SDR testing platform utilizing a microATX 
motherboard.  This testing platform allows the greatest 
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flexibility in interfacing the GPU with a variety of 
peripherals while keeping the form factor as small as 
possible.  The testing platform consists of the Universal 
Software Radio Peripheral (USRP) and GNU Radio 
software on a microATX motherboard interfaced to a 
NVIDIA 8800 GTX GPU.  Although one could have 
selected a laptop with GPUs as the SDR testing platform, 
we wanted the ability to test different types of GPUs as 
well as maintain code compatibility with the baseline 
testing code.  A block diagram of the microATX 
motherboard used for the GPU-based SDR testing 
platform is shown in Figure 4. 
 

Figure 4: Block diagram of motherboard used to 
create a GPU based SDR  
 
     A simple experiment to test the GPU based SDR using 
the channelization kernel was to collect AM data using 
the USRP and GNU radio.  Rather than developing GNU 
radio code to interface the USRP directly to the GPU, we 
decided to save the data to disk before processing it with 
the GPU.  This scenario matches closely with the test that 
was previously done on the Dell Precision 690 
workstation. The USRP was tuned to 1 MHz and 
decimated to 1 Msps so the entire AM band could be 
channelized with the GPU configured to generate 100 
bands (each band has a 10 kHz bandwidth).  Figure 5 

illustrates an energy map of the bands generated from the 
GPU. 

 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
Figure 5: Energy map of AM Band channelized using 
GPU-based channelization kernel  
 
     The AM frequency band at 820 kHz (strongest band in 
energy map) was selected and demodulated after the 
channelization.  The time to process this 1 minute data 
file through the GPU was approximately 4 seconds 
compared to approximately 9 seconds through the CPU.  
This indicates a 2.5x improvement, which is comparable 
to the baseline test case for 100 channels.  This also 
indicates the potential to have real-time AM band 
processing if data is streamed from the USRP to the GPU 
directly.        

 
5. SUMMARY AND CONCLUSIONS 

 
Based on our results, using a GPU for polyphase 
channelization can provide a significant improvement in 
processing time. This advantage is especially pronounced 
for higher channelization and decimation rates.  An AM 
channelization example was given, but this approach can 
easily be extended to a variety of signal processing 
routines involving multi-band partitioning as a 
preprocessing step. To further take advantage of the 
GPU’s parallelism, we plan to extend the processing of 
the channelized data to include filtering, equalization, and 
demodulation while on the GPU.  We have implemented 
GPU approaches with some of these algorithms already 
and need only apply them in parallel to the channelized 
streams. 
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