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ABSTRACT 2. RADIO ENVIRINMENT AWARENESS

A cognitive radio (CR) must be aware of its radio A cognitive radio is aware of its own capabilitighe
environment and able to recognize the waveformsate  needs of its user, the radio environment, and tveming
present. In this paper, we present a global vievthef regulations in ways that allow it to configure Ifse
waveform recognition problem and explore the cingjés intelligently to optimize its performance in resgento
of designing a general receiver architecture thab ¢ novel and rapidly changing environment. For purgose
recognize various modulated waveforms. We present aanalysis, it is convenient to represent the world o
design for an adaptive signal classification systmal cognitive radio technology as three domains in ortde
analyze its performance with data from real overdir provide a functional structure. These are thser
waveforms. The whole system is implemented on a GNU (performance preferencespplicy (spectral regulations)
Radio SDR platform and an Anritsu™ Signature signal andradio domains.
analyzer. The radio domain is defined to include both thaéioga
environment and the radio hardware. Our group, the
1. INTRODUCTION Center for Wireless Telecommunications (CWT) at
Virginia Tech, is developing a software cognitivegime
Although much of the research interest in cognitiadio (CE) system that can work with a variety of SDR
(CR) focuses on its potential use for dynamic spect  platforms [1, 2]. Middleware is developed betwelem €E
access and cognitive network applications, thecjpias and SDR, which transfers both the radio hardware
of cognition in the radio node have not been deeplyinformation and radio environment information toeth
explored. Other CR related work is largely devoted  cognitive algorithms.

developing radio hardware platforms to support The radio environment is further formulated as the
anticipated cognitive functionalities. However, it superset of waveforms and propagation channel data.
difficult to make an optimal platform design withaau full Because parametric representation of both the wavef

understanding of the required algorithms. Thereams  and channel is essential to machine reasoning and
urgent need to look into the fundamentals that make learning, the waveform is defined by PHY and MA@eda
radio cognitive: knowing the radio’s environmentdan parameters. We use the term “signal” for the PHyeta
optimizing its performance. “Knowing the radio’'s parameter set, which includes carrier frequencgnnokl
environment” is the focus of this paper. bandwidth, symbol rate, pulse shape, modulatiorgrer
In Section 2 we explore the concept of radio correction coding, etc. The signal recognition e t
environment awareness and its role in cognitiveiorad starting point of radio cognitive behavior. The idas
systems; Section 3 discusses signal recognition andchallenges arise because it is inseparable fronsitireal
presents a system level design of a cognitive vecei reception procedure and therefore bears all théeclyzs
Section 4 highlights the design challenges of sach of receiver design [3] and adds more because new th
system; and Section 5 shows how the theoreticak way signal is to be received “cognitively”.
be implemented on a real software defined radioRESD
platform. 3. SIGNAL RECOGNITION

Signal recognition is often assumed or abstractduhk or

network level algorithm design and simulations. ldwer,
it is extremely important to understand the prolseim
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recognizing a signal before it can be successfully available in the complex baseband information. The
demodulated. Key challenges include energy detectio difficulty lies in phase lock: certain featurestbg signal
signal classification, and general carrier recoveryd need to be recognized to guide the adaptation wfeca
symbol timing for any modulation scheme. Theserare recovery and phase lock.

discrete issues. Due to the lack of prior knowledgmmt Carrier phase lock depends on modulation. It is
recognition by multiple stages through the receisteain difficult and not necessary to make a ‘“universal”
is needed as shown Figure 1. modulation classifier that can classify arbitraignsls. A

practical modulation classifier design depends ba t
target modulations, receiver structure, availabtepssing
resource, and signal quality (e.g., SNR). Note it
signal is frequency shifted to some small IF, omptex
quasi-baseband where residual LO drifting exists due to
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information becomes available in complex form.

Signal synchronization consists of carrier and lsyim
timing recovery. The design philosophy of carrier
recovery is based on nonlinear energy extraction fo
distinct frequency components, and synchronizaii®n
maintained by feedback of phase error [3, 7]. @arri
recovery typically depends on one of two assumption
using a pilot signal or having a symmetric spectriim
enable carrier regeneration through nonlinear djpa1s).

In the pilot-aided case, the receiver should kntw t
modulation standard to recognize the pilot tonejtha
carrier regeneration case, the receiver also hksdw the
modulation scheme in advance to apply an apprepriat
nonlinear operation. In our approach to the cogaiti
receiver, a quadrature structure is selected that lme
reconfigured for both linear and nonlinear modolati
signals. Symbol timing is also essential for cohere
demodulation. Although various symbol synchronizati
and timing algorithms are available [8], most rely prior
knowledge of signal parameters like modulation, lsgin
rate, pulse shaping filter, etc. To maximize geligraan
early-late gate symbol timing loop is incorporatadour
cognitive receiver design.

Figure 1. Multi-standard Cognitive Receiver

In signal recognition, there are two system-level
challenges: the first is to design a bootstrap gsecto
cycle and refine the knowledge of different inpignsls,
and the second is to design a general-purposevezdbiat
can provide synchronization and demodulation fdr al
these signals. Signal recognition also needs tgtatia
time varying channel characteristics.

The need for sensing a wide bandwidth and reliably
detecting the presence of different signals impcssere
requirements on receiver sensitivity, linearity, dan
dynamic range. Conventional signal detection tegies
include matched filtering and energy detection [4].
However, matched filtering requires prior signal
knowledge; and energy detection lacks spectral
differentiation. Cyclostationarity detection is tygg a lot
of attention due to its noise suppression [5]; havethe
computational cost of bi-frequency domain correlatis
prohibitive of real time processing [6]. Given tberrent
improvements in processor technology, a good balasc
to use wideband fast Fourier transform (FFT) foarse
energy detection and then run hierarchical FFT Wiftar
resolution in the band of interest.

In a cognitive receiver, key PHY-layer signal
parameters, including carrier frequency, baseband
bandwidth, modulation, symbol rate and pulse shaped
to be recognized rather than assumed as in a ctborah
standards-based one. Without such information sitpeal
cannot be synchronized correctly. It is importanipbint
out that in real receivers, hardware issues likeallo
oscillator (LO) drift, DC bias, and cross-talk altevent
the “accurate” carrier estimate that many simafatased
papers assume. The heart of a radio receiver isecar
phase lock, necessary to make the complex baseban
signal available to feed the symbol timing loop.idt
actually meaningless to investigate signal recagmiafter
carrier phase lock, because all the signal infaionais

4. MODULATION CLASSIFICATION

A short overview of the pattern classification aggmh is
provided by Nagy [9]. Maximum Likelihood (ML)
classifiers [10, 11] require certain prior knowledgnd
only MPSK waveforms can be classified in a coherent
receiver. Methods based on higher-order nonlinear
statistics are also proposed, but only to clads#fguency
modulation waveforms [12]. These have a  huge
computational cost for non-coherent cases [13].0Zer
8rossing was found effective for non-coherent
Classification, but is sensitive to SNR [14]. Other
approaches include using histograms of the phase,
envelope, and instantaneous frequency of the analyt
signal representation of the input signal [15-183r the
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classifier design, using an Artificial Neural Netko
(ANN) is the most popular choice for a pattern gggton

approach [19-21]. More complicated ANN and featsee
designs are provided by [22, 23].

Unfortunately, most of the previous works' resuite
biased on ideal computer simulation environmeriss t
the validity and robustness remains questionaln,Ahe
fundamental assumptions in building the classHigstem,
such as prior signal knowledge, synchronizatiorddan,
and timing logic, are usually not explained clearly
However, these are the most important parts ofasign
recognition design. In this paper we emphasizesyistem
level design principles of modulation classificatioNe
stress thathe purpose of modulation classification is to
enable adaptive synchronization for the cognitive
receiver.

The proposed modulation classifier structure mash
in Figure 2. The complex IF signal obtained from the
analog-to-digital converter (ADC) is quasi-basebamd

centered near DC, not phase locked. The modulation

classification process consists of three steps:
preprocessing, (2) feature extraction, and (3) ufeat
pattern classification.
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Figure 2. M odulation Classification System

4.1 Preprocessing

Preprocessing is very important in providing stahiel
clean signal samples. The tasks involved in pregssiog
include: (1) centering and normalization against
propagation bias and variation, (2) extracting clemnal
segments to feed the following feature extractidocky
and (3) providing useful estimates of carrier tésaaatio,
carrier frequency, etc.

A 20 kbps DBPSK air waveform generated by a GNU
Radio SDR and collected by Anritsu™ Signature gpett
analyzer is shown ifigure 3. The received signal has an

SNR about 20 dB and has strong envelope variation

during the one-second collection time. After bleokan
normalization, all signal segments have a four pelak-
to-peak swing.

4.2 Featur e Extraction

The signal features lie in temporal, spectral, aadtor
spaces. A temporal feature-based classificatiomgusi
OCON-ANN was detailed in [24]. This paper extends t
signal feature extraction to complex quasi-basebBoth
the feature extraction and the classifier are adapb
varying incoming signal SNR.

When the incoming signal consists of real data
samples, a Hilbert transform [3] is applied to dbttne
complex envelope and analytical instantaneous phase
Figure 4 shows the complex spectrum and features of the
DBPSK signal fronfigure 3.
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Figure 3. DBPSK Signal, 20kbps, 20dB SNR

0 500 2000

Since the complex envelope remains the same when
center frequency varies, it becomes a key infomnati
source before phase lock. As illustrated in thecklo
diagram of Figure 2, both the FFT and the analytical
phase derivative can provide instant frequencyresgion,
but the phase derivative is very susceptible teeoit is
also difficult to extract a clean nonlinear padrr the real
air signal as shown ifrigure 4c. Therefore FFT-based
Welch periodogram is preferred to provide -carrier
estimate. The FFT can also be used in generatiag th
Hilbert transform.

Among the features extracted from the complexiguas
baseband, the normalized standard deviation oflepege
o(env)/ u(env) , is the most stable and separable
feature characterizing modulation signal groups. tm
other hand, most complex amplitude and envelopedas
features, even with high order statistics like &sis, are
strongly correlated.

The feature extraction is designed adaptive to the
input signal SNR. White noise is effectively supgsed by
variable block averaging. Shown filgure 5, even with 5
dB SNR, the feature sets from different modulatians
still fully separable. In fact, as far as the featis defined
to be theoretically separable, feature processinghée
temporal domain can also get good results at loviR.SN
The reason is that the envelope is not as noisstsenas
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phase, thus envelope-based features perform hbter
phase statistics, which is shown relying on highiRShany
times in the literature.
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Although the envelope-based feature is robust and @ rmmm e Alourasan

does not require carrier synchronization, it hasté when
classifying higher-order modulations (like QAMS8, GIA
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16, etc). In the signal recognition process, gnsugh for
the envelope information to tell the carrier symctizer
what the modulation group is, i.e., is it real aladrature,
analog or digital? Such information is almost eroutg
configure the phase lock loop. Once the carridodked
and the complex baseband signal is obtained, kfine
modulation recognition is trivial in the consteitat
display [24].

4.3 Featur e Pattern Classification

Since the features used here are only two dimeakitre
classifier is also simplified from pattern recogit
OCON-ANN [24] to feature slicer, which is a threkho
grid separating different modulation signals apakn
example AM slicer for various incoming SNR is shoiwwn
Figure 6. Due to the noise suppression in feature
extraction, the slicers are trained very easilking
subseconds to train all four modulations in Matl@bhe
convergence curve is shownkigure 7.

The classification correction rate directly depeia
processing gain from the block averaging feature
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Figure 6. M odulation Feature Slicer
Separating AM Signal from Others
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Figure7. AM Signal Slicer Training Convergence

extraction block. The main tradeoff is between pssing
delay and accuracy for different incoming signahlgy.
The feature extraction processing is currently icuméd

to carry block-based accumulating averaging; tleeesfas
collection length extends, the classification resilmore
accurate. With in-lab collected public safety aavweforms
(15~20 kHz bandwidth) with SNR varying between 5 dB
and 30 dB, and with a unit block size of 100 syrebtie
modulation is always classified correctly within $020
blocks, which is less than 0.1 seconds.

5. TEST BED IMPLEMENATION
The signal classification testbed system consiétévo
parts: a GNU Radio with USRP as the signal trariemit
and an Anritsu™ Signature vector signal analyzethas
receiver and classifier.

5.1. GNU Radio and USRP

The GNU Radio project is an open source projedtiuitd

modulations such as narrowband DBPSK (10 kbps ~ 20
kbps). They are all within 25 kHz public safetyaohel
bandwidth. The future plan is to integrate the P25
standard waveform into this testbed. This signal
classification testbed will be demonstrated at SBR0O

5.2. Waveform M easur ement Platform

The Anritsu™ Signature vector signal classifieaimulti-
functional signal analyzer. It has built-in Matlato
seamlessly connect signal acquisition with signal
processing.

6. CONCLUSTION

In this paper, we demonstrated a system desigignéls
recognition for cognitive radios. Design challenge®
analyzed in detail, and classification results witkal
public safety air waveform are presented. The steq is

to combine this pre-sync signal recognition modulth
post-sync module [24] and integrate both into a GNU
Radio testbed to form a complete cognitive receiver
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