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ABSTRACT

Cascaded integrator-comb (CIC) filters are frequently used 
in software radio modems as interpolation and decimation 
filters. However, CIC filters are known to exhibit passband 
droop and thus introduce inter-symbol interference (ISI). 
Many methods have been proposed in order  to improve 
the passband characteristics of CIC filters. These methods 
usually increase hardware complexity in the modem.  An 
alternative  approach  is  to  achieve  the  Nyquist  (M) 
property and eliminate ISI by modifying the pulse-shaping 
filter (PSF) coefficients. Previously, PSF coefficients have 
been found through linear programming. However, linear 
programming is  not  necessarily the  simplest  or  the  best 
method in finding the filter coefficients. Recently a simple 
iterative  least-squares  algorithm  has  been  proposed  for 
Nyquist (M) filter design. We extend this method for use 
in  a  modem  using  CIC  filters  for  interpolation  and 
decimation. This method may also be used if  additional 
filtering is required,  or if other types of interpolation or 
decimation filters  are used.  When compared  to the best 
published work, the proposed design method produces a 
PSF that when used in cascade with the CIC filters yields 
superior results in minimizing passband ripple, increasing 
stopband attenuation, and reducing ISI.

1. INTRODUCTION

One of the advantages in software defined radio modems 
is that they give a single platform the flexibility to handle 
multiple  modulation  methods,  data  rates,  and  signal 
processing techniques. Thus, it is important that the system 
have a high degree of programmability. It is also important 
to find signal processing techniques that are common to 
many  or  all  of  the  waveforms  since  this  provides 
simplicity in the modem.

Cascaded  integrator-comb  (CIC)  filters  were  first 
introduced by Hogenauer [1]  and are frequently used in 
software  radio  modems  because  they  provide  hardware 
simplicity and because of their flexibility in functioning as 
interpolation and decimation filter.  Although CIC filters 

are  efficient  in  the  sense  that  they  do  not  require 
multiplications,  they  do  exhibit  passband  droop  and 
introduce inter-symbol interference (ISI). Many techniques 
have been proposed  in  order  to  improve  these negative 
characteristics of CIC filters [2]-[4].   The authors of [2] 
propose to sharpen the CIC frequency response by using 
multiple copies of a CIC filter.  Their decimator structure 
then consists of the sharpened CIC filter and several half-
band  filters.   In  [3],  the  authors  use  an  interpolated 
second-order  polynomial  filter,  along with a  single CIC 
filter,  simplified  half-band  filters,  and  a  programmable 
FIR filter. The authors of [4] propose to compensate for 
the  CIC  filter  deficiencies  and  achieve  Nyquist  (M) 
characteristics in the cascade of the CIC filter and pulse-
shaping  filter  (PSF)  by  simply  modifying  the  PSF 
coefficients. The coefficients are chosen through the use of 
linear programming, but linear programming can be fairly 
complicated and may not necessarily yield the best results.

In this paper, we adopt a similar approach to that in 
[4] in that we wish to achieve the Nyquist (M) property 
with the cascade of the CIC filter and PSF by modifying 
the  PSF  coefficients.  However,  instead  of  using  linear 
programming we use  a  novel  Nyquist  (M) filter  design 
method to derive the filter coefficients [5]. We extend this 
method to  solve for  the PSF coefficients.  Our approach 
produces filter  coefficients that  yield a system with less 
passband ripple,  more stopband attenuation, and less ISI 
than the method proposed in [4]. This method may also be 
used  to  trade-off  between  filter  length,  Nyquist  (M) 
characteristics, and stopband attenuation. Moreover, it can 
be  used in  combination with the methods of  [2],  [3]  to 
achieve the Nyquist (M) property when a PSF is used in 
cascade with those decimation filters.

We begin by formulating the problem and introducing 
the Nyquist  criterion in Section 2.  We then discuss  the 
design  procedure  for  finding  the  Nyquist  (M)  filter  in 
Section 3. Using the Nyquist (M) filter it is simple then to 
find  the  PSF coefficients  for  a  system with a  PSF/CIC 
filter  cascade.   This  is  detailed  in  Section  4.  We  then 
illustrate  the  design  procedure  through  some  design 
examples and compare these with those obtained in [4]. 
Finally we draw some conclusions in Section 6.
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Figure  1.  (a)  Digital  modulator  with  CIC  filter  (b) 
Modified digital modulator with CIC filter.

2. PROBLEM FORMULATION

We consider the pulse-shaping and interpolation portion of 
a digital modulator as shown in Fig. 1 (a). Here  Hp(z) is 
the PSF, and the three following blocks constitute a CIC 
interpolation filter with Ns stages, sample rate conversion 
R, and parameter  L  [1].  The parameter  L provides some 
limited control  of zero placement in the CIC filter.  The 
corresponding structure found in the demodulator consists 
of the reversal of these blocks and the replacement of the 
upsample-by-R block by a downsample-by-R block. Using 
the noble identity [6, pp. 119] and by letting

 (1)

we can modify the  structure  in  Fig.  1  (a)  to  obtain the 
structure shown in Fig. 1 (b).

Let the cascade of HP(zR), and HC(z) be defined as

 (2)

In the time domain, (2) is written as

 (3)

where * denotes convolution, and

 (4)

i.e., the sequence hPU(n) is an upsampled version of hP(n). 
We wish to design a filter  HNQ(z) of length  NNQ+1  such 
that G(z)=HNQ(z)HNQ(z-1) satisfies the Nyquist criterion

 (5)

where  M is an integer called the over-sampling factor. It 
indicates  the  number  of  filter  coefficients  per  symbol 
interval. The sequence  g(n) is the inverse  z-transform of 
G(z). Note that the Nyquist condition (5) is with reference 
to  the  high  sampling  rate  of  Fig.  1.  A  filter  G(z)  that 
satisfies  (5)  is  called  Nyquist  (M),  [6],  and  HNQ(z)  is 
referred to as a square-root Nyquist (M) filter.

Table 1
Square-root Nyquist (M) Filter Design

Inputs
NNQ: filter length
M: oversampling factor
α: rolloff factor
Γ: diagonal weight matrix
Initialization
◦  Construct S´ using (11), (12), and (19).
◦  Construct Φ´ using (14), and (15).
◦  Use Cholesky factorization to obtain C from 
    Φ´ = CTC.
◦  Choose a target vector d and form the vector u.
◦  Construct the initial vector h´0 from the samples of a
    square-root raised-cosine pulse-shape with rolloff
    factor α.
◦  Let i = 0.
Iterations
◦  B = [I ⊗  h´i

T] S´
◦  D = [BT CT]T

◦  h´ = (DTΓ2D)-1DTΓ2u
◦  h´i+1 = (h´i+h´)/2
◦  Increment i
Final step
◦  h´ =  h´i

◦  Construct h from h = Eh´

We  assume  that  the  PSF  coefficients  are 
programmable.  Thus for every different configuration of 
the CIC filter the PSF coefficients can be modified so that 
the  cascade  of  these  two  filters  HNQ(z)  maintains  the 
Nyquist (M) property. For each configuration of the CIC 
filter  the  filter  coefficients  hC(n)  are  known.  When  a 
particular HNQ(z) is found, the remaining task is to find the 
coefficients of the PSF, hP(n).

3. NYQUIST (M) FILTER DESIGN

The first part of the task is to design the Nyquist (M) filter 
HNQ (z). For this we use the design method presented in 
[5]. This method uses an iterative weighted least-squares 
algorithm that attempts to minimize the magnitude of the 
stopband response of HNQ(z).  This particular cost function 
can be formulated as

 (6)

where fo is the stopband edge. In [5], the stopband edge is 
defined as
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 (7)

following  the  notation  of  the  square-root  raised  cosine 
filter in [7], where α is the rolloff factor. The algorithm is 
summarized in Table 1.  The algorithm takes as its inputs 
NNQ (one less than the length of HNQ(z) ), the oversampling 
factor M, the rolloff factor α, and the weight matrix Γ.

This algorithm designs a linear-phase low-pass filter, 
so the filter coefficients are symmetric.  Let us define the 
column vector

when NNQ is odd, and

when NNQ is even, and T denotes transposition. The full-
length vector hNQ is thus

 (8)

where

 (9)

I is  the  identity  matrix,  and  J,  for  NNQ odd,  is  the 
antidiagonal  matrix  with the  antidiagonal  elements  of  1 
and, for  NNQ even, is obtained by removing the first row 
the antidiagonal matrix.

The conditions imposed in (5) are shown in [5] to be 
equivalent to

           (10)

for n = 0, 1, …, NNQ where

           (11)

are constant matrices with the elements of Sn given by

           (12)

The cost function (6) is shown to be equivalent to

           (13)

where

           (14)

and the elements of Φ are given by

           (15)

The  constraints  in  (10)  can  be  relaxed  in  order  to 
trade-off  between  other  design  considerations.   Other 
design  goals  besides  the  Nyquist  (M)  criterion  include 
minimizing the  magnitude  of  the stopband of  the  filter, 
providing  increased  immunity  to  timing  jitter,  and 
reducing the peak-to-average power ratio of the modulated 
signal [5].  In this paper, we only consider minimizing the 
stopband  response,  and  achieving  the  Nyquist  (M) 
property.

The  algorithm allows the  constraints  of  (10)  to  be 
relaxed as in

           (16)

where the dn are a set of desired/target values. Combining 
the set of equations in (16) we get

           (17)

where

           (18)

           (19)

and

             is the identity matrix of size (NNQ+1)x(NNQ+1), and 
⊗ denotes the Kronecker product.

The author of [5] applies the Cholesky factorization to 
expand Φ′ as,                   where C is an upper triangular 
matrix, and uses this to rearrange (13) as

           (20)

Here, ⋅ denotes  the  2-norm  of  a  vector.  In  order  to 
minimize  the  cost  function  ξs one  must  attempt  to 
minimize  the  length  of  the  vector Thus  the 
additional design goals

           (21)

are added, where 0 is a column vector with zero elements.
Combining (17) and (21), one obtains

           (22)
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where                    and                   . The approximation 
(22)  is  an over-determined  system of  soft  equations  for 
which we seek a solution for the unknown vector          .

To solve (22), [5] defines the error vector

           (23)

where Γ is a diagonal matrix whose diagonal elements are 
a  set  of  weights  to  be  given  to  the  elements  of  the 
difference               Larger weights are assigned to the 
elements  where  minimization  should  be  emphasized.  A 
weight of zero is assigned to the elements that are treated 
as  don't  care elements.  In this way, the different  design 
goals mentioned above can be achieved. In [5], the author 
chooses the solution as the vector         that minimizes the 
norm of the vector v.

Since we attempt to find a Nyquist (M) filter and the 
square-root  raised-cosine pulse-shape is  a  Nyquist  pulse 
shape that closely fits our desired design goals, we (like 
[5])  initialize  the  algorithm with the  square-root  raised-
cosine coefficients as shown in Table 1.  In this way, we 
find our desired filter HNQ(z).

4. PULSE-SHAPE FILTER DESIGN

Now that  we  have  designed  a  Nyquist  (M)  filter,  it  is 
simple  to  obtain  the  desired  PSF  coefficients  from (3). 
Suppose that we desire the length of the sequence hP(n) to 
be of length N+1. We then define

hP = [hP(0) hP(1) … hP(N)] T.

The sequence hC (n) is of length NC+1 = Ns (RL-1)+1, and 
we define

hC = [hC(0) hC(1) … hC(NC)] T.

We thus have a length NNQ+1 = Ns(RL-1)+RN+1 sequence 

hNQ = [hNQ(0) hNQ(1) … hNQ(NNQ)] T.
It is important that we design a Nyquist (M) filter of length 
NNQ  defined above.  We can then rewrite (3) as

              hNQ = HC hP               (24)

thus, HC is a (NNQ+1)x(N+1) matrix.
When a  solution  has  been  found  for  hNQ using  the 

algorithm in Table 1, we can use (24) to find a solution for 
hP.  Equation (24) is an overdetermined system of linear 
equations.  Note that HC has full column rank, thus, there 
exists a unique least-squares solution hP for the system of 
equations in (24) [8, pp. 222-223]. There are many ways 
of  computing  the  least-squares  solution  [8],  but  one 
straightforward method is to calculate

           (25)

where        is the Moore-Penrose pseudo-inverse defined 
as

           (26)

Once the filter coefficients hP(n) have been calculated they 
are quantized to the desired bit-precision.

Please  note  that  although  we  have  presented  the 
problem using CIC filters as interpolation and decimation 
filters,  the problem may be reformulated using different 
interpolation  and  decimation  filters  and/or  additional 
filters.  The  overdetermined  system  of  equations  will 
involve a matrix that is different than  HC but the design 
method will remain the same.

5. DESIGN EXAMPLE

In  this  section,  we  present  design  results  and  compare 
them with those found in [4] using the same system setup. 
For the system we have a 71-tap PSF with M=12, and 12-
bit coefficients.  The CIC filter consists of  Ns = 4 stages, 
has sample-rate conversion factor R = 3, and parameter L 
= 1. We first found a suitable HNQ(z) using the method in 
Table  1  with  NNQ =  Ns(RL-1)+RN+1  =  219,  α =  0.25. 
Recall that Γ is a weight matrix corresponding to how the 
different conditions given in u are weighted. The vector u 
is split into two sections:  d represents the conditions that 
relate to the Nyquist (M) property, and the remaining part 
corresponds to the stopband response minimization. The 
weights in Γ that correspond to the stopband minimization 
are all given a value of 1. The weights in Γ corresponding 
to the elements dn, where n = mM are given the value of 2. 
All remaining elements in Γ are given a value of 0.

Once the Nyquist (M) filter  HNQ(z) is found, we use 
(25) to find the least-squares solution hP.  The response of 
this  filter  (i.e.,  the  composite  of  HC(z)  and  HP(z)) 
compared with the Wasserman filter  is  given in Fig.  2. 
Only a portion of the frequency response has been shown 
for the purpose of clarity. The integration of the magnitude 
of the filter response HNQ(z) over the stopband, i.e., (6), is 
shown in Table 2.  We can see that the proposed method 
has better stopband attenuation than the Wasserman filter.
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Figure  2.   Filter  response  comparison  between  the 
proposed method and the Wasserman method.

Table 2: Filter Performance

Proposed 3.2426x10-8

Wasserman 7.6376x10-8

Proposed 2.4549x10-4

Wasserman 3.8309x10-3

Table 2 also shows the amount of ISI  that  the different 
methods exhibit.  We can see that the proposed method 
once  again  outperforms  the  Wasserman  method.   A 
comparison of the passband responses of the two filters is 
shown in Fig. 3. From this we can see that the passband 
response of the current method has less ripple. The filter 
coefficients are shown in Table 3.

6. CONCLUSION

In this paper,  we have shown a straight-forward method 
for  designing  the  PSF when used  in  cascade  with  CIC 
filters.  This approach is simpler than linear programming 
and may use less hardware than the methods of [2], and 
[3]. The system approach is similar to that taken by [4], 
but the design method is different.  Our approach is to use 
an iterative weighted least-squares algorithm to design a 
Nyquist  (M)  filter,  and  then  to  find  the  least-squares 
solution to an overdetermined system of linear equations 
to find the PSF coefficients.  Our approach yielded a filter 
with less passband ripple, better stopband attenuation, and
less  ISI  than  the  Wasserman  filter  which  relies  on 
complicated linear programming.

Figure 3. Passband response comparison between the 
proposed method and the Wasserman method.

Table 3: HP(z) Filter Coefficients

Filter Tap Value
h(0) = h(70) = -0.0004882812500
h(1) = h(69) = 0.0000000000000
h(2) = h(68) = 0.0004882812500
h(3) = h(67) = 0.0009765625000
h(4) = h(66) = 0.0007324218750
h(5) = h(65) = -0.0004882812500
h(6) = h(64) = -0.0019531250000
h(7) = h(63) = -0.0024414062500
h(8) = h(62) = -0.0012207031250
h(9) = h(61) = 0.0019531250000
h(10) = h(60) = 0.0046386718750
h(11) = h(59) = 0.0048828125000
h(12) = h(58) = 0.0009765625000
h(13) = h(57) = -0.0048828125000
h(14) = h(56) = -0.0092773437500
h(15) = h(55) = -0.0080566406250
h(16) = h(54) = 0.0002441406250
h(17) = h(53) = 0.0109863281250
h(18) = h(52) = 0.0168457031250
h(19) = h(51) = 0.0117187500000
h(20) = h(50) = -0.0039062500000
h(21) = h(49) = -0.0214843750000
h(22) = h(48) = -0.0283203125000
h(23) = h(47) = -0.0158691406250
h(24) = h(46) = 0.0126953125000
h(25) = h(45) = 0.0407714843750
h(26) = h(44) = 0.0473632812500
h(27) = h(43) = 0.0200195312500
h(28) = h(42) = -0.0327148437500
h(29) = h(41) = -0.0817871093750
h(30) = h(40) = -0.0888671875000
h(31) = h(39) = -0.0280761718750
h(32) = h(38) = 0.0981445312500
h(33) = h(37) = 0.2526855468750
h(34) = h(36) = 0.3796386718750
  h(35) = 0.4287109375000
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