
REFIN_0

REFIN_1

10-50
MHz

SPL_Clka

SPL_Clkb

AHB APB
Bridge

Device Control

AHB DMA

ARM926EJ-S

Vector Interrupt
Controller

TAP
(JTAG)

AHB

Power
Mgmt

APB

USB OTG Interface

LCD Interface

Camera Interface

Ethernet Interface

General
Purpose

I/O
General
Purpose

I/O
General
Purpose

I/O
GPIO

(8)

HSN AHB
Bridge

HSN

SIMULTANEOUS BASEBAND PROCESSING CONSIDERATIONS IN A
MULTI-MODE HANDSET USING THE SANDBLASTER™ BASEBAND

PROCESSOR
Babak Beheshti, b.beheshti@ieee.org

Sanjay Jinturkar, Sandbridge Technologies, sanjay.jinturkar@sandbridgetech.com

ABSTRACT

The Sandbridge SB3011 baseband processor is a SoC
containing four C programmable Sandblaster™ DSP
processors, and all peripherals necessary to provide a
single chip baseband/multimedia and application
processing solution for SDR based handsets. This SoC
uniquely provides 4 simultaneous digital I/Q DMA
channels to the RF front end, allowing for simultaneous
multi-mode baseband processing from multiple RF front
ends. This paper discusses techniques and considerations
in the software development to allow for a short design
cycle for implementation of such multi-mode systems.
Software partitioning considerations, multi-threading the
application to take advantage of the multi-threaded
architecture of the baseband processor, double buffering
and pipelining, as well as parallel DMA processing are
discussed. Concurrency matrix development for
evaluation of simultaneous modes is also described.

Audio
Codec

UART
/ IrDA PS/2

Synch
Serial
Port

Smart
Card

MMC
Card

Real Time
Clock (2)RTC

(2)
Timers

(2)
Timer

s
(2)

Multi Port
Memory

Controller

NAND Flash Interface

L2 Memory

L2 Memory DSP2

Node
1

PSD

TDM

SPI / I2C

MPTMPTMPT

Core 1

Local External ICache

L1
Data

Memory

L2 Memory

Node
2

PSD

TDM

NGPIO

MPT MPTMPT

L2 Memory

Node
3

PSD

TDM

MPT MPTMPT

Core 3

LocalExternal

ICache

L1
Data

Memory

L2 Memory

Node
4

PSD

TDM

SPI / I2C

MPTMPTMPT

Core 4

LocalExternalICache

L1
Data

Memory

MCU MCU

MCUMCU

DSP Complex

TCMCache

Clock
Generation

Int. Clks

Core 2

LocalExternal

ICache

L1
Data

Memory

1. INTRODUCTION

Sandbridge’s flagship product is the SB3011 Flexible
Baseband Processor. The SB3011 uniquely provides the
capability to operate on any network and any
communication protocol.
Featuring the integration of FOUR Sandblaster™ cores
into a single SoC, the innovative Sandblaster™
architecture enables the SB3011 to implement the latest
3G protocols including W-CDMA, CDMA2000, and TD-
SCDMA. Additionally, since the physical layers of these
protocols are implemented in software, creating
‘derivative’ device designs is a relatively inexpensive
software task, rather than a costly hardware integration
effort.
The SB3011 features the Sandblaster™ DSP for
execution of baseband in software - including physical
layer. It has a programmable RF interface, with the
capability to capture raw data at 100 million samples/sec.
It includes interfaces to LCD, keypad, USIM, SmartCard,
Audio codec, IrDA, plus emerging 'critical' features such
as add-on memory cards, camera interface, and USB.

Figure 1 - SB3011 Internal Block Diagram

Figure 1 shows the SB3011 chip which has four
SandBlaster™ DSP cores. The SB3011 has the following
features:

• Low-power-consumption design
• Four SandBlaster™ DSP cores connected by a

high speed bus in a ring topology
• Eight time-multiplexed hardware thread

execution units for each DSP core
• SIMD/Vector operation unit
• 600MHz (1.67ns instruction cycle)
• 90nm CMOS process

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

mailto:b.beheshti@ieee.org
mailto:sanjay.jinturkar@sandbridgetech.com

• 32Kbytes instruction cache per core
• 64Kbytes L1 data memory per core
• 256Kbytes L2 data memory per core
• Integrated ARM processor

SB3011 DSP core has a SIMD vector operation unit
which provides a parallel-execution capability of four 16-
bit multiply-accumulate (MAC) operations per single
instruction cycle.
The peripheral devices which require high-speed access
are connected with Advanced High-Performance Bus
(AHB) and most peripherals are connected via Advanced
Peripheral Bus (APB). Both AHB and APB are compliant
with Advanced Microcontroller Bus Architecture
(AMBA).

2. PARALLEL STREAMING DATA (PSD)
INTERFACE

All SandBlaster™ cores have a digital 16-bit PSD port
that can perform either input or output transfers; the
direction is set either externally, or programmed
internally. Figure 2 shows a block diagram of the PSD.
The PSD interface is the single most important feature
that allows connection of multiple RF front ends to the
SoC.

Figure 2: PSD Functional Block

2.1 Downlink Parallel Streaming Data DMA channel
The Downlink Parallel Streaming Data (DPSD) DMA
interface provides the mechanism for capturing streaming
data from an external parallel streaming data interface,
e.g., an A2D converter. Data received through the
device’s parallel input port is expected in multiplexed
form: I data sampled on the falling edge of the external

interface clock; Q data sampled on the rising edge of the
external interface clock.

2.2 Uplink Parallel Streaming Data DMA channel
This interface provides the mechanism for transmitting
streaming data to an external parallel streaming data
interface, e.g., a D2A converter. Data transmitted
through the device’s parallel output port will be generated
in multiplexed form: I data is transmitted while the
external interface clock is a logic ‘1’; Q data is
transmitted while the external clock interface is low. For
the external device receiving the data, I must be sampled
in the falling edge, and Q must be sampled on the rising
edge. The interface multiplexes and transfers the data
from the memory I and Q buffers (as allocated by the
programmer, through various control registers) to the
external interface.

D1 D2 D3 D4 D5

Tdv

EXT_CLK

Dout

Tdv

D1 D2 D3 D4 D5

Tdv

EXT_CLK

Tdv

<15:0>

Figure 3: Digital to Analog Output Timing

2.3 Multi-Buffering in the PSD Interface

16

PSD_DIR

PSDi(15:0) PSD (15:0)

16PSDo(15:0)

Node PSD:
16-bit DPSD or 16-bit UPSD

PSD_CLK

The PSD interface in both the receive and the transmit
modes is based on a multi-buffered operation. For the
Downlink PSD, the DMA transfers the input data (I & Q)
to two separate buffers. Each of these two buffers are
divided into an equal number of sub-buffers (Typically, in
a program, the buffers are two dimensional arrays of
shorts, where the first dimension indicates the size of the
sub buffer and the second dimension indicates the number
of sub-buffers). Once a sub- buffer is filled, an interrupt
occurs. This interrupts can be polled using an operating
system service call. In the Uplink PSD, data to be
transmitted is put in appropriate buffers, and when that
buffer is transferred to the RF interface for transmission,
an interrupt is generated indicating that this buffer is free
now.
Setting up a PSD DMA transfer in any direction involves
setting of 4 Parameters:

1. Start address of the buffer where I data will be
placed

2. Start address of the buffer where Q data will be
placed

3. The number of sub-buffers inside each of the I &
Q buffers

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

4. Size of each sub-buffer. This minimum size is 64
bits, and has to be aligned at a 64 bit boundary

The size and number of buffers in an implementation of a
particular wireless standard are determined by a trade off
between amount of memory allocated for PSD use,
frequency at which the buffer transfer interrupts are to be
services and consequently time available between
consecutive interrupts to perform useful processing. Table
1 illustrates the symbol rates for several common wireless
standards and the required sampling clock rates for the
receive/transmit DMA assuming an over sampling rate of
4.

Standard Chip/symbol
Rate

Sample Rate
(DMA Clock

Rate)
WCDMA 3.8400E+06 1.54E+07
GSM 2.7083E+05 1.08E+06
TD-SCDMA 1.2800E+06 5.12E+06
TIA/EIA-95A/B 1.2288E+06 4.92E+06
cdma2000 (1xRTT) 1.2288E+06 4.92E+06
1xEV-DO 1.2288E+06 4.92E+06
1xEV-DV 1.2288E+06 4.92E+06
HSDPA 3.8400E+06 1.54E+07
TETRA 1.8000E+04 7.20E+04

Table 1 - Symbol Rate and Sampling Clock Rates for Some
Standards

Naturally, the larger the buffer size, the longer time it
takes to fill/empty that buffer before an interrupt is issued.
This time period is available for the DSP engine to
perform baseband processing operations on the data to be
transmitted or received.
Table 2 shows a comparison of the number of interrupts
per second required for a WCDMA (FDD) system based
on various combinations of buffer sizes and number of
buffers. The combinations are selected to consume 128k
of memory consistently. Assuming a typical overhead of
1.33uSec for context switch and interrupt service by the
operating system, the table illustrates the percentage of
time the processor spends time processing interrupts. As
seen in Figure 4 the selection of the buffer size should be
somewhere between the extremes of too many interrupts,
and very long buffers (that inhibit pipelining of
processing chain with multi-buffering).

Buffer
Size

Number
of Buffers

Time
between
Buffer

Transfer
Interrupts

Number of
Interrupts
per Second

%
Overhead

1024 128 6.67E-05 15000 0.0200%
2048 64 1.33E-04 7500 0.0100%
4096 32 2.67E-04 3750 0.0050%
8192 16 5.33E-04 1875 0.0025%

16384 8 1.07E-03 938 0.0013%
32768 4 2.13E-03 469 0.0006%
65536 2 4.27E-03 234 0.0003%

Table 2 – Comparison of Buffer Interrupt Processing
overhead based on Buffer Size for WCDMA (FDD)

Number of Interrupts Per Second vs. Sub-Buffer Size

0
2000
4000
6000
8000

10000
12000
14000
16000

1024 2048 4096 8192 16384 32768 65536

Sub-Buffer Size

N
um

be
r o

f I
nt

er
ru

pt
s

Pe
r

Se
co

nd

Figure 4: Number of Interrupts per Second vs. Buffer Size in
a CDMA System (Total Memory Usage fixed at 128kBytes)

3. UNIVERSAL RF API FOR MULTIPLE

STANDARDS

The SB3011 Board Support Package (BSP) contains an
RF API designed to work with any wireless RF front end.
This universal API allows for a consistent software design
for interfacing RF front ends supporting different wireless
standards. The RF API can be ported to any RF front end
interfacing with the PSD ports as well as I2C and SPI
ports for configuration. Examples of this universal API
are:

RF_Drv_Rf_Error_t Drv_Rf_Set_Afc (int afc_val)
This API sets the value of AFC.
Parameters: afc_val
Units: Hz
Return Value:
• RF_DRV_RF_SUCCESS
• Or Error code

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

RF_Drv_Rf_Error_t
Drv_Rf_Set_PA_Level (int pa_level)
This API sets the value of Power Amplifier level.
Parameters: pa_level
Units: dB
Range: -55 to +23 dBm (approx.)
Return Value:
• RF_DRV_RF_SUCCESS
• Or Error code

RF_Drv_Rf_Error_t
Drv_Rf_Set_Transmit_Channel (int channel_num)
With this API, through the SPI interface (for instance),
one programs the LO synthesizer to set the uplink
channel, then checks the PLL lock detect interrupt status.
Return Value:
• RF_DRV_RF_SUCCESS
• Or Error code

An example piece of C code using this API follows:

Rf_Init_all();

Drv_Rf_Switch_Transmit(0);//turns on transmitter

(0 turns Tx off)

Drv_Rf_Switch_Receive(1);// Turns ON Rx (0 turns

off Rx)

Drv_Rf_Set_Receive_Channel(VAL_D);// Set Rx freq

band to 2140 MHz

Drv_Rf_Set_Rx_Agc(VAL_LNA,VAL_AGC);

Figure 5, Figure 6 and Figure 7 show captures of an EV-
DO transmitter, a QPSK transmitter and Spectrum of a
QPSK received signal, respectively. These figures
demonstrate the utility of the universal RF API is
interfacing with multiple RF standard front ends.

Figure 5 - EVDO TX EVM with QPSK PSA (0dBm signal)

Figure 6 - QPSK 24 dBm

Spectrum QPSK RX Captured
d t

Figure 7 - QPSK Rx spectrum from captured data at -55
dBm

4. OPERATING SYSTEM SUPPORT

The operating system provides API’s to transmit or
receiver the data samples from the PSD’s on the
processor. These API’s enable a user to control the
amount per transfer, its direction, and its location. A
sample of the low level API’s are described here:

int osIqOutInit(void): This is called in the beginning of
the DMA transfer to initialize the transmit DMA..

int osIqInStart(void *iaddr, void *qaddr, unsigned int
nbufs, unsigned int bufsize)
This transfers the input data (I & Q) to two separate
buffers. Each of these two buffers are divided into an
equal number of sub-buffers [Typically, in a program, the
buffers are two dimensional arrays of shorts, where the
first dimension indicates the size of the sub buffer and the
second dimension indicates the number of sub-buffers].
Once a sub- buffer is filled, an interrupt occurs. This
interrupt should be cleared as soon as possible.
Parameters:

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

iaddr: Start address of the buffer where I data will
be placed
qaddr: Start address of the buffer where Q data will
be placed
nbufs: The number of sub-buffers inside each of
the I & Q buffers
bufsize: Size of each sub-buffer. This minimum
size is 64 bits, and has to be aligned at a 64 bit
boundary

int osIqinStop(void)
This stops the A/D from filling up the input buffer

The operating system support of the DMA transfers from
and to the RF front end allow for rapid application
development by reusing legacy code, only modifying the
API parameters.

5. SIMULATOR SUPPORT FOR MULTIPLE RF
INTERFACES

The BSP for SB3011 provides a simulation environment
within which the 4 PSD operation can be validated in
absence of any hardware platform. The simulator can be
configured for a specific sampling clock rate. Once the
program is simulated, the developer can easily verify
whether any of the 4 PSD interfaces meet their expected
deadlines, and no buffer overrun occurs.

A sample configuration for the simulator is:
IQInput {trace 1} IQInput:2 {trace 0} IQInput:3 {file
"foo.txt"}'

This will set tracing to 1 for all 4 IQInput (A2D)
peripherals, override for core 2 and set its tracing back to
0, and finally tell IQInput on core 3 to use foo.txt as the
input file.

10. CONCURRENCY MATRIX

Table 3 is a concurrency matrix for a number of wireless
standards running on the SB3011 processor. Each of these
standards consumes a percentage of the processor’s
processing power. These numbers have been compiled
experimentally by implementation of physical layer
protocols for the standard in fixed point ANSI C. The
intersection of each column and row is a possible
combination of two standards running concurrently on the
SB3011. As long as the number in the matrix is less than
100 (percent), the two standards can run in real time in
parallel. The diagonal of the matrix is blank, because the
row and column intersects in the diagonal refer to the
same standard. The matrix here has been presented as a

guideline. It is not all inclusive of all possible multimedia
and other standards that can run on the platform as a
software application.

11. SUMMARY

In this paper we have illustrated a development
environment, consisting of a BSP, operating system and a
simulator that support a multi-RF, multi-protocol software
based baseband processing. The rich development
environment allows for a rapid development cycle,
providing immediate feedback to the developer as to real
time behavior of the baseband processing.

11. REFERENCES

[1] B. Beheshti, T. Raja, ”Software Defined Radio

Implementation Considerations and Principles Using
the Sandblaster™ SDR Baseband Processor”,
Proceedings of Software Defined Radio Technical
Forum, 16-18 November, 2005, Anaheim, California.

[2] B. Beheshti, “A Study of the Technology Migration
Path of the Cellular Wireless Industry from 3G to
3.5G and Beyond”, Proceedings of 2005 IEEE Long
Island Systems, Applications and Technology
Conference (LISAT2005), May 2005, Farmingdale,
New York.http://www.sdrforum.org

[3] D. Iancu, J. Glossner, V. Kotlyar, H. Ye, M.
Moudgill, and E. Hokenek, “Software Defined
Global Positioning Satellite Receiver”, Proceedings
of the 2003 Software Defined Radio Technical
Conference (SDR’03), HW-2-001, 6 pages, Orlando,
Florida, 2003.

[4] J. Glossner, D. lancu, J. Lu, E. Hokenek, and M.
Moudgill, “A Software Defined Communications
Baseband Design”, IEEE Communications
Magazine, Vol. 41, No.1, pp. 120-128, Jan., 2003.

[5] J. Glossner, D. Iancu, V. Kotylar, H. Ye, E.
Hokenek, and M. Moudgill, “Software Defined
Global Positioning Satellite Receiver”, Proceedings
of Software Defined Radio Technical Forum, pp.
HW-2-001, 1-5, Orlando, Florida, November 2003. .

[6] J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill,
E. Hokenek, M. Schulte, and S. Vassiliadis,
“Sandbridge Software Tools”, in Proceedings of the
3rd International Workshop on Systems,
Architectures, Modeling, and Simulation
(SAMOS.p3), July 21-23,2003, pp. 142-147, Samos,
Greece.

[7] J. Glossner, T. Raja, E. Hokenek, and M. Moudgill,
“A Multithreaded Processor Architecture for SDR”,
The Proceedings of the Korean Institute of
Communication Sciences, Vol. 19, No. 11, pp. 70-84,
November, 2002.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

[8] J. Glossner, E. Hokenek, and M. Moudgill,
“Multithreaded Processor for Software Defined
Radio”, Proceedings of the 2002 Software Defined

Radio Technical Conference, Volume I, pp. 195-199,
November 11-12, 2002, San Diego, California.

Table 3 - Concurrency Matrix for Several Wireless Standards Running on SB3011

 Analog TV Bluetooth GPRS1 GPRS2 WCDMA1 WCDMA2 WCDMA3 WiMax CDMA1 CDMA2 DVB-H1 DVB-H2 DVB-H3 DVB-H4 DVB-H5 DVB-H6

Analog TV 35 34 50 96 100 108 105 61 111 36 52 38 57 40 63

Bluetooth 35 19 35 81 85 93 90 46 96 21 37 23 42 25 48

GPRS1 34 19 80 84 92 89 45 95 20 36 22 41 24 47

GPRS2 50 35 96 100 108 105 61 111 36 52 38 57 40 63

WCDMA1 96 81 80 96 151 107 157 82 98 84 103 86 109

WCDMA2 100 85 84 100 155 111 161 86 102 88 107 90 113

WCDMA3 108 93 92 108 163 119 169 94 110 96 115 98 121

WiMax 105 90 89 105 151 155 163 116 166 91 107 93 112 95 118

CDMA1 61 46 45 61 107 111 119 116 47 63 49 68 51 74

CDMA2 111 96 95 111 157 161 169 166 97 113 99 118 101 124

DVB-H1 36 21 20 36 82 86 94 91 47 97

DVB-H2 52 37 36 52 98 102 110 107 63 113

DVB-H3 38 23 22 38 84 88 96 93 49 99

DVB-H4 57 42 41 57 103 107 115 112 68 118

DVB-H5 40 25 24 40 86 90 98 95 51 101

DVB-H6 63 48 47 63 109 113 121 118 74 124

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

