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ABSTRACT 
 

This paper describes the architecture, design flow and veri-
fication process for the FPGA implementation of timing 
recovery circuits for QAM waveforms. We achieve sample 
timing alignment by phase selection of a polyphase 
matched filter. The challenge in realizing these circuits in 
hardware is not in the construction of the multirate filter 
architecture, but rather the complex control circuitry that 
marshals data from the receiver front-end processor (e.g. 
digital down-converter) into the timing recovery compute 
engine. This engine must select the correct filter path to 
align the output sample position with the maximum eye-
opening in the face of sample clock phase and frequency 
offsets and drift. The design and FPGA implementation of 
this control plane, filter architecture, timing error detector 
and memory management sub-system is described, along 
with implementation considerations for Xilinx Virtex-4 
FPGAs. A model-based FPGA design flow called System 
Generator, based on the Mathworks Simulink visual pro-
gramming environment, was used for our implementation. 
The FPGA resource utilization and performance is also 
reported.  
 

1. INTRODUCTION 
 
For a number of practical reasons, digital QAM receivers 
often operate at 2-to-4 samples per input symbol. It does 
this, first to satisfy the Nyquist sampling criterion on behalf 
of a following fractionally spaced equalizer, and second to 
enable the carrier recovery loop to recognize and digitally 
correct residual frequency offsets in the down converted 
and I-Q sampled input signal. The over sampling of the 
input time series also enables easy to design and implement 
interpolating filters that support the timing recovery proc-
ess in the receiver. In this process, the receiver must align 
output samples from its matched filters with the peak of the 
equivalent correlation function formed by the matched fil-
ter. This peak location corresponds to the maximum open-
ing of the eye opening formed from the over sampled 
matched filter output.  
        There are two standard DSP approaches to obtain tim-
ing recovery in QAM receivers. The first approach uses a 
polyphase interpolator to calculate the samples at the de-
sired locations from the offset samples obtained from the 

free running ADC. These position corrected samples are 
processed in the receiver matched filter whose output, 
through a detector, forms a timing error signal to guide the 
interpolating filter re-sampling process. The second ap-
proach folds the interpolation process into a polyphase 
matched filter. The separate paths of this polyphase filter 
represent a collection of filters matched to different time 
offsets between input sample positions and the output sam-
ple peak correlation value position. The timing recovery 
process simply has to determine which filter matches the 
unknown time offset between input and output samples. 
Either process uses a phase locked loop (PLL) to direct the 
pointer to the appropriate phase leg of the polyphase filter.  
These options are shown in figure 1.  
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Figure 1. DSP Based Timing Recovery Options:  
(Upper) Polyphase Interpolator with Matched Filter  

Or (Lower) Polyphase Matched Filter 
 
The two most common timing error detection schemes are 
based on the maximum likelihood (ML) estimator and the 
Gardner estimator. In the ML estimator, the PLL seeks the 
peak of the correlation function. It accomplishes this by 
forming an estimate of the derivative at the test point. Early 
legacy systems used the early and late gates to form the 
derivative estimates while modern receivers use a deriva-
tive matched filter which is in fact, exactly that, a filter 
formed as the time aligned derivative of the matched filter. 
Such a filter forms the derivative of the matched filter out-
put at its output. The timing error sample fed to the PLL is 
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the product y(n)*ydot(n), the output of the two matched 
filters at the sample time location being tested. By way of 
comparison, in the Gardner estimator the PLL seeks the 
zero crossings of the eye-diagram, obtained at 2-
samples/symbol, from the product shown in (1). This prod-
uct is seen to be an approximation to ydot(n) * y(n). 
 

     Gardner

dot

e (n) {det[y(n-1)]-det[y(n+1)]} y(n)
(n) y(n)y

= ⋅
≅ ⋅

          (1) 

 
For completeness, we observe that the ML estimator re-
quires two filters to process the input samples while the 
Gardner estimator forms both y and ydot from successive 
samples of a single matched filter to form its error term. 
The ML estimator has a higher SNR than does the Gardner 
estimator and will achieve a specified timing variance with 
a shorter averaging time. In the rest of this paper we will 
restrict our discussion to the ML implementation of the 
timing recovery loop. 
        Figure 2 presents the structure of the two timing re-
covery schemes based on the ML error term formed from 
two matched filters. Here the left side loop is seen to con-
trol the polyphase interpolator while the right side loop is 
seen to control the matched filters. The first loop exhibits a 
larger transport delay through the cascade of two filters 
than does the second loop through the delay of a single 
filter. Due to the additional delay, the polyphase interpolat-
ing filter must have a slower (or lower bandwidth) loop 
filter than does the polyphase matched filter. The perform-
ance comparisons presented in the last two paragraphs is 
the reason we examine the ML polyphase matched filter 
timing recovery system: namely faster and lower variance 
loop response. 
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Figure 2. ML Control of Polyphase Interpolating Filter  
and of Polyphase Matched Filter 

 
We note that the time error detector operates at symbol rate 
while the filters processing input samples operate at 2 (or 
4) samples per symbol. Thus, as shown in figure 2, there is 
a 2-to-1 down sampler between the matched filter output 
and the input to the loop filter which, now that we think 
about it, operates at symbol rate. The problem we must 
now address is how do we decide which matched filter 
output sample is to be delivered to the loop filter? 
 

2. TIMING RECOVERY SAMPLE SELECTION 
 
We have two samples of the modulated signal per symbol 
interval. The question to be resolved is “in which interval 
does the peak reside, first or second”. At the start of the 
process we don’t know the answer to this question so we 
hypothesize it is in the first interval and test the hypothesis. 
Figure 3 presents both of these conditions: on the left side 
the peak is in the first half interval and on the right side the 
peak is in the second half interval.  
        As a specific example, suppose we have a matched 
filter and derivative filter with 32 sets of path weights (0 
through 31) which allow us to partition the T/2 clock inter-
val into 32 sub increments. Assume the left segment of 
figure 3 is valid and we start with the hypothesis that the 
peak resides in the first half interval. We set an interval flag 
to “0” as a reminder and preset the phase accumulator to 
the center of this half interval by loading it with the index 
“16”. The loop then increments the filter pointer to higher 
indices, towards the right, in response to the y(n)*ydot(n) 
product increasing the content of the PLL phase accumula-
tor. We eventually reach the position for which the 
y(n)*ydot(n) product becomes zero and the phase accumula-
tor settles to its nominal steady state value.  
        Continuing with our specific example, we now assume 
the right segment of figure 3 is valid but start with the hy-
pothesis that the peak resides in the first half interval. With 
the interval flag set to “0” and with the phase accumulator 
set to the center of the first half interval by index “16”, the 
loop starts to increment the filter pointer to higher indices, 
towards the right, in response to the y(n)*ydot(n) product 
increasing the content of the PLL phase accumulator. In 
this scenario, the index pointer eventually reaches filter 
“31” and the loop filter tries to shift to the next index, in-
dex “32”. While there is no index “32”, there is a next in-
dex! Index “32” is actually index “0” in the next interval. 
When the phase accumulator overflows in response to a 
loop filter increment we respond by toggling the interval 
flag and start computing outputs after the n+1 sample in-
stead of after the originally hypothesized n sample.   
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Figure 3. Two Conditions:  
Left Side, Correlation Peak in First Half Interval and  
Right Side, Correlation Peak in Second Half Interval 

 
The accumulator overflow toggles the flag to remind us 
that the peak resides in the next half interval. The next half 
interval starts with the next input sample, sample (n+1). 
Thus on overflow, we must present the next input sample 
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to the filter register. Thus an overflow will require two in-
put samples prior to computing one output sample. Simi-
larly, an underflow will require two computed outputs in 
response to one input sample. The overflow (or underflow) 
may occur periodically as the index pointer slides forward 
or backwards on the number line to resolve a frequency 
offset between sample clock and underlying modulation 
clock. The phase accumulator and the polyphase pointer 
profiles are shown in figure 4 for a timing acquisition with 
and without an overflow. Here we clearly see the accumu-
lator overflow and the even-odd index flag toggling at the 
overflow. Figure 4 also illustrates the acquisition for a 
fixed phase offset and for a sampling frequency offset of 
one part per thousand relative to symbol clock.  

 

 
Figure 4. Phase Accumulator and Polyphase Pointer for 

Phase Offsets and for Frequency Offset Acquisition 
 

3. POLYPHASE MATCHED FILTERS 
 
The design of the polyphase matched filter and derivative 
matched filters are simple once the process is carefully 
explained. The prototype matched filter for the example 
cited in this paper up-samples by a factor of 32 from input 
data originally over-sampled 2-to-1. Thus the prototype 
filter design requires a 64-samples per symbol square-root 
Nyquist filter, which when down-sampled 32-to-1 presents 
a set of time offset polyphase arms each operating at 2-
samples per symbol. It is common to select a filter length 
that is an integer multiple of 32, the number of paths in the 
polyphase partition.  

        We now address some practical details. Some filter 
design packages only offer filters with an odd number of 
weights of the form 2M+1, where M is the number of sym-
bols delays to the filter center tap. If we desire a filter with 
an even number of weights we have two choices. The first 
is that we accept the offered weights and discard the last 
sample, or second, we design a filter for twice the number 
of stages and discard the even indexed samples.  
        The sqrt Nyquist filter weights “hh” presented by the 
design routines are normally scaled for unity energy, that 
is, hh*hh’ = 1. We have to change this scaling to obtain 
unity gain when the receiver polyphase segments process 
the scaled shaping filter weights of the modulator weights 
“gg” designed for 2-samples per symbol and scaled for 
unity amplitude, that is gg = gg/max(gg). The scale factor 
required for the down-sampled receiver filter sets the inner 
product of one path with the scaled modulator filter to 
unity. The processing steps required to scale the receiver 
filter are shown in (2). Also shown are the steps required to 
form the derivative matched filter from the matched filter. 
These steps entail extending “hh” with a repeat sample on 
each end to suppress the edge discontinuity when differen-
tiated and a convolution with a simple derivative filter [1 0 
-1] to form the “dy” along with a division by 2/64 to form 
the “dx” of the derivative. The final step is the pruning of 
the extended end points required to make the filters equal 
length and align their centers. Figure 5 shows the impulse 
response and the frequency responses of the matched and 
the derivative matched prototype filters formed by the Mat-
lab instructions shown in (2). 
 
       

Modulator Shaping Filter:      gg rcosine(1,2,'sqrt',0.5,6);
Scaled and Pruned Filter:       gg gg(1:24)/max(gg);

Polyphase Matched Filter:     hh rcosine(1,64,'sqrt',0.5,6);
Scale Factor:               

=
=

=
           aa hh(1:32:768)*gg';

Scale Matched Filter:             hh hh/aa;
Polyphase Partition:             hh2 reshape(hh(1:768),32,24);

Derivative Matched Filter:  dhh conv([hh(1) hh hh(768)],[1 0 -1]

=
=
=

= *64/2);
Prune End Points:                dhh dhh(3:770);
Polyphase Partition:           dhh2 reshape(dhh,32,24)

=
=

(2) 

 

 
Figure 5. Prototype Matched and Derivative Matched 

Filter Impulse and Frequency Responses 
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4. FPGA IMPLEMENTATION 
 
This section describes the process employed to realize the 
FPGA timing recovery circuit. The tool chain and architec-
ture of the timing recovery circuit are described. 
 
4.1. Timing Recovery: From Simulation to Hardware 
 
The timing recovery circuit was first realized in Matlab. 
This functional model was extensively instrumented to 
generate test vectors that were used for the hardware vali-
dation. The script also included verification code to com-
pare data generated in the Matlab model with the corre-
sponding nodes in the System Generator™ [2] description 
of the FPGA implementation. 
 
4.2. FPGA Implementation Using Model Based Design 
 
System Generator [2] is a model-based design environment 
that extends The Mathworks Simulink® [4] visual pro-
gramming framework with hardware generation capability. 
The design environment allows the system developer to 
work at a suitable level of abstraction from the target hard-
ware and allows the use the same computation graph not 
only for simulation and verification, but for FPGA hard-
ware implementation. System Generator blocks are bit- and 
cycle-true behavioral models of FPGA intellectual property 
components, or library elements. The library based ap-
proach results in design cycle compression in addition to  
generating area efficient high-performance circuits. The 
complete timing recovery circuit was realized in this tool 
chain, with some of the verification methodology leverag-
ing the untimed Matlab description of the circuit. 
 
4.2. Timing Recovery Hardware Architecture 
 
The most complex element of the timing recovery circuit is 
the control plane.  The hardware implementation is de-
signed with an oversampling factor of 2, that is, there are 
two samples per symbol. In the ideal case, when the re-
ceiver’s ADC sampling clock is identical in phase and fre-
quency to the transmitter output clock, the timing recovery 
circuit will consume 2 input samples per symbol period and 
generate one correctly timed output sample that is subse-
quently forwarded downstream to the post timing recovery 
demodulation tasks. Of course in practice, the ADC sam-
pling clock will not be identical to the transmitter clock, 
and will typically be running at a slightly lower, or higher 
frequency than the transmitter clock. 
 
The FPGA realization of the core filter functions that are at 
the heart of the derivative matched filter timing recovery 
circuit are relatively simple. The complexity of the imple-
mentation is associated with the data management tasks. 
Managing the input sample stream and directing the correct 

number of input samples and coefficients to the polyphase 
filter and derivative matched filter requires careful design 
of the datapath architecture and consideration on how data 
is transferred between the functional blocks in the timing 
recovery circuit. 
 
A dataflow-style methodology was employed for the tim-
ing recovery block itself, as well as for supporting the 
communication of data between the functional components 
that comprise the circuit. Extensive use of handshake sig-
nals are used to manage delivery of samples from the digi-
tal down converter (DDC) that precedes the timing recov-
ery module, to the data input port of the timing block, and 
for identifying the availability of the new, re-timed sam-
ples, at the output port of the block. New input data is writ-
ten to the timing recovery circuit by asserting the New Data 
(ND) signal. New output samples are indicated by the Out-
put Valid signal.  
 
This simple interface produces a modular block that can 
easily be inserted in to a MODEM datapath with a mini-
mum of design effort and minimum consideration for the 
latency of the other upstream modules in the physical layer, 
since all of the control for the timing recovery circuit is 
localized. 
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Figure 6. Top level architecture of the timing recovery cir-
cuit. 
 
4.2.1. High-Level Architecture 
 
Figure 6 provides a high-level view of the timing recovery 
circuit architecture. There are 3 basic time domains to con-
sider in the implementation – the rate at which samples 
arrive at the input of the timing recovery circuit, the output 
rate of the circuit, which is the effectively the symbol rate, 
and the FPGA processing clock rate.  The maximum input 
rate for the system is a function of the processing clock 
frequency and the number of operations required per input 
sample. Based on the MODEM specifications, that would 
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include a definition for the system data rata for example, it 
is straightforward to determine the input sample rate to the 
timing recovery circuit. Based on this value, the designer 
would select a suitable FPGA processing clock frequency, 
and identify the degree of computational parallelism that is 
required in the implementation to accommodate the input 
sample rate. The matched filter (MF) and derivative 
matched filter (DMF) are the most arithmetically demand-
ing elements in the implementation, and drive a significant 
component of the hardware resource utilization. One of the 
key properties of FPGA-based signal processing is the abil-
ity to service problems with significant compute require-
ments by leveraging spatial, or concurrent computing. 
State-of-the-art FPGAs like the Xilinx Virtex-4 [3] family 
provide devices with up to 512 embedded MAC units, and 
this abundance of resources can deliver high-performance 
systems by exploiting the available parallelism in a signal 
flow graph. For example, in the case of the timing recovery 
circuit, the matched filter could be implemented by a single 
time-shared multiply-accumulate (MAC) engine, or a fully 
parallel architecture that employs one MAC per filter coef-
ficient. Naturally, the former implementation would pro-
duce the smallest hardware footprint at the expense of input 
sample rate. The later parallel implementation would result 
in a larger hardware footprint but with significantly greater 
throughput than the fully folded architecture. The design 
constraint in our example is to minimize FPGA real estate, 
and as a consequence, time division multiplexing, or hard-
ware folding is a significant theme in the implementation. 
 
4.2.2. Circuit Description 
 
Referring to Figure 6, complex input samples are written to 
the input FIFO InFIFO by asserting the dataflow signal 
ND. The FIFO output port supplies the samples that are 
consumed by the matched filter and the derivative matched 
filter at the heart of the circuit. The control block TRFSM 
orchestrates the delivery of samples from InFIFO  to the 
filter regressor vector memory based on a combination of 
the availability of samples in the FIFO and the availability 
of the filter resource labeled TRPE in the figure. TRPE 
contains the polyphase matched filter, polyphase derivative 
matched filter, error loop filter and a reasonably complex 
state machine that, among other functions, supplies the 
address generation for accessing the various filter coeffi-
cients and data required to execute the two filters. 
 
The timing circuit is designed to run at the nominal rate of 
2 samples per symbol. In “steady-state” operation, the pro-
cedure is to deliver 2 new input samples to the circuit and 
extract a single and correctly timed sample. As a function 
of time, temperature, component tolerance and component 
aging, there will be a slight difference between the baud 
clocks of the receiver and transmitter. As described in an 

earlier section, the timing circuit is to compensate for this 
timing differential. For the case of a slow receiver baud 
clock, the timing circuit is called upon to deliver a new 
output sample based on the delivery of only one new input, 
compared to the nominal 2 input samples. Conversely, if 
the receiver sample clock is running at a higher frequency 
than the transmitter clock, on average, more samples are 
accumulated per symbol period, and periodically, the tim-
ing circuit is required to deliver a new output sample based 
on the delivery of 3 new input samples rather than 2. The 
number of samples M that are to be consumed to form the 
next output is computed by TRPE and provided to the state 
machine. This in turn is factored in to the control module 
TRFSM and eventually converted in to the required control 
signals required to actually read samples from InFIFO and 
write these values to the filter regressor vector memory in 
TRPE. An additional key control signal to TRFSM is the 
current state of InFIFO  as reflected by the FIFO Empty 
flag. To simplify the timing recovery block interface, and 
to essentially provide some insulation, or abstraction, from 
the timing details of the upstream processing modules, the 
firing of the timing of the recovery circuit is ultimately 
gated by the availability of input samples to the circuit. 
After a particular firing of the timing recovery circuit to 
compute output sample i,  the number of input samples M 
(1, 2 or 3) required to generate output i+1 becomes avail-
able and is supplied to TRFSM. TRFSM effectively polls 
the data input FIFO, waiting for new input samples, and as 
they become available manages the transfer of the new 
sample from the FIFO to the filter memory. Once the req-
uisite number of samples have been inserted in to the filter 
memory, the timing circuit is instructed to fire and generate 
a new output. New input samples that may arrive while the 
timing recovery circuit is computing are simply buffered in 
the input FIFO. There is no strict requirement on the arrival 
time of new input samples to the timing recovery module 
as the whole design is dataflow driven. Naturally, to ac-
commodate the real-time requirements of the MODEM the 
average rate of arrival of input samples must be commen-
surate with the MODEM throughput. Constructing the cir-
cuit in this manner, makes it a relatively simple task to 
compose a large system from module level IP (intellectual 
property) that supports a similar dataflow interface abstrac-
tion. 
 
4.3. Implementation Results 
 
 
Table 1 summarizes the resource utilization for the timing 
recovery module. One block memory (BRAM) [3] is re-
quired to implement the input FIFO InFIFO,  another for 
the MF and DMF regressor vector storage and two addi-
tional BRAMs are used to store the MF and DMF filter 
coefficients. Note that the MF and DMF operate on identi-
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cal input data and so only one BRAM is required to realize 
the filter data storage. The MF operates on complex input 
samples using a set of real-valued coefficients and so two 
multipliers are required in the implementation. Only the 
real component of the DMF is required to form the timing 
error signal and so only one multiplier is required for this 
circuit.   
The error signal is the product of the real component of the 
MF with the  real component of the DMF, and is resourced 
with an embedded multiplier. A proportional-integral re-
cursive filter is used to condition the error signal, and one 
multiplier is used to support the filter coefficients in the 
proportional and integrator paths of this structure. 
 

Device BRAM MPY Slices LUT/FFs 
XC4VSX35-12 4 6 444 339/739 

ISE version 8.2.01, synthesis with XST, System Generator version 8.2 
 
Table 1: FPGA resource utilization for timing recovery 
circuit.  
 
4.4. Performance Analysis 
 
Using a 768-tap matched filter partitioned in to 32-phases 
of 24 coefficients per phase, requires 24 processing clock 
cycles to run a filter segment for a fully folded implementa-
tion. There are an additional 16 clock cycles of processing 
overhead associated with the state machine and other proc-
essing tasks such as, for example,  executing the loop filter. 
This results in a processing duration of 40 clock cycles to 
generate an output sample.  The implementation supports a 
clock frequency of 330 MHz in the fastest speed grade “-
12” Virtex-4 FPGA. Re-timed samples are therefore pro-
duced at a rate of 330e6/40 = 8.25 MSym/s. If, for exam-
ple, the data is carrying QPSK modulation, the resulting bit 
rate is 2x8.25 = 16.5 Mbps. It is straightforward to allocate 
more FPGA embedded MAC units to the matched filter 
and polyphase matched filter to reduce the processing time. 
For a fully unrolled implementation, that is one in which a 
dedicated MAC unit is allocated to each tap in the MF and 
DMF, the processing time of the timing recovery circuit 
can be reduced to 16 cycles. In this case, and using an 
FPGA processing clock frequency of 330 MHz, results in 
an output symbol rate of 330e6/16 = 20.625 MSym/s. For 
QPSK modulation the data rate is 41.25 Mbps. Table 2 
summarizes MODEM data rate as a function of the folding 
factor applied to the MF and DMF. 
 
 
 
 
 
 
 

Folding 
Factor 

MF & DMF 

Mod. MPs MSym/s Mbps 

24 QPSK 6 8.25 16.5 
24 16-QAM 6 8.25 33.0 
24 64-QAM 6 8.25 49.5 
12 QPSK 39 11.79 23.6 
12 16-QAM 39 11.79 47.1 
12 64-QAM 39 11.79 70.7 
1 QPSK 75 20.625 41.3 
1 16-QAM 75 20.625 82.5 
1 64-QAM 75 20.625 123.8 

 
Table 2: Timing recovery circuit output rate and bit rate as 
a function of the number of multipliers allocated to the 
implementation. A clock rate of 330 MHz is assumed. 
 
 

5. CONCLUSIONS 
 
A brief tutorial on timing recovery using derivative 
matched filters was presented. The FPGA implementation 
of this method was described along with an outline of the 
tool chain that was employed. We note that the complexity 
of the timing recovery circuit is associated with the control 
plane, and that a useful mechanism for managing the mar-
shalling of data through the various modules in the circuit 
is based on concepts employed in data flow methodologies. 
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